Superpartient ratio: Difference between revisions
Wikispaces>Sarzadoce **Imported revision 244982029 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 244988341 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-08-09 03:13:20 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>244988341</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Superpartient numbers are ratios of the form (n+m)/n, or 1+m/n, where m is not n or a whole-number multiple of n, and where n is a whole number other than 1. In ancient Greece they were called Epimeric (epimerēs) ratios, which is literally translated as "above a part." These ratios were considered to be inferior to Epimoric ratios. | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Superpartient numbers are ratios of the form (n+m)/n, or 1+m/n, where m is not n or a whole-number multiple of n, and where n is a whole number other than 1. Another way to say it is that is that they are ratios p/q, where p is greater than q and p and q are relatively prime (so that the fraction is reduced to lowest terms) and where p-q is greater than 1. In ancient Greece they were called Epimeric (epimerēs) ratios, which is literally translated as "above a part." These ratios were considered to be inferior to Epimoric ratios. | ||
All epimeric ratios can be constructed as combinations of [[superparticular|superparticular numbers]]. For example, 9/5 is 3/2 × 6/5.</pre></div> | All epimeric ratios can be constructed as combinations of [[superparticular|superparticular numbers]]. For example, 9/5 is 3/2 × 6/5.</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Superpartient</title></head><body>Superpartient numbers are ratios of the form (n+m)/n, or 1+m/n, where m is not n or a whole-number multiple of n, and where n is a whole number other than 1. In ancient Greece they were called Epimeric (epimerēs) ratios, which is literally translated as &quot;above a part.&quot; These ratios were considered to be inferior to Epimoric ratios.<br /> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Superpartient</title></head><body>Superpartient numbers are ratios of the form (n+m)/n, or 1+m/n, where m is not n or a whole-number multiple of n, and where n is a whole number other than 1. Another way to say it is that is that they are ratios p/q, where p is greater than q and p and q are relatively prime (so that the fraction is reduced to lowest terms) and where p-q is greater than 1. In ancient Greece they were called Epimeric (epimerēs) ratios, which is literally translated as &quot;above a part.&quot; These ratios were considered to be inferior to Epimoric ratios.<br /> | ||
<br /> | <br /> | ||
All epimeric ratios can be constructed as combinations of <a class="wiki_link" href="/superparticular">superparticular numbers</a>. For example, 9/5 is 3/2 × 6/5.</body></html></pre></div> | All epimeric ratios can be constructed as combinations of <a class="wiki_link" href="/superparticular">superparticular numbers</a>. For example, 9/5 is 3/2 × 6/5.</body></html></pre></div> |