|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | The ''152 equal division'' divides the octave into 152 equally sized parts of 7.895 cents each. It is a strong 11-limit system, with the 3, 5, 7, and 11 slightly sharp. It provides the [[Optimal_patent_val|optimal patent val]] for the 11-limit [[Mirkwai_clan|grendel]] and [[Mirkwai_clan|kwai]] linear temperaments, the 13-limit rank two temperament [[Ragismic_microtemperaments#Octoid-Octopus|octopus]], the planar temperament [[Hemifamity_family|laka]], and the rank five temperament tempering out 169/168. It tempers out 1600000/1594323, the amity comma, in the 5-limit; 4375/4374, 5120/5103, 6144/6125 and 16875/15807 in the 7-limit; 540/539, 1375/1372, 4000/3993, 5632/5625 and 9801/9800 in the 11-limit, and 169/168, 325/324, 351/350, 364/363, 1001/1000, and 4096/4095 in the 13-limit. |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-09-24 05:16:13 UTC</tt>.<br>
| |
| : The original revision id was <tt>453638230</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //152 equal division// divides the octave into 152 equally sized parts of 7.895 cents each. It is a strong 11-limit system, with the 3, 5, 7, and 11 slightly sharp. It provides the [[optimal patent val]] for the 11-limit [[Mirkwai clan|grendel]] and [[Mirkwai clan|kwai]] linear temperaments, the 13-limit rank two temperament [[Ragismic microtemperaments#Octoid-Octopus|octopus]], the planar temperament [[Hemifamity family|laka]], and the rank five temperament tempering out 169/168. It tempers out 1600000/1594323, the amity comma, in the 5-limit; 4375/4374, 5120/5103, 6144/6125 and 16875/15807 in the 7-limit; 540/539, 1375/1372, 4000/3993, 5632/5625 and 9801/9800 in the 11-limit, and 169/168, 325/324, 351/350, 364/363, 1001/1000, and 4096/4095 in the 13-limit.
| |
|
| |
|
| [[Paul Erlich]] has suggested that 152 could be considered a sort of [[http://tech.dir.groups.yahoo.com/neo/groups/tuning-math/conversations/topics/3041|universal tuning]]. | | [[Paul_Erlich|Paul Erlich]] has suggested that 152 could be considered a sort of [http://tech.dir.groups.yahoo.com/neo/groups/tuning-math/conversations/topics/3041 universal tuning]. |
|
| |
|
| 152 = 8 * 19, with divisors 2, 4, 8, 19, 38, 76.</pre></div> | | 152 = 8 * 19, with divisors 2, 4, 8, 19, 38, 76. |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>152edo</title></head><body>The <em>152 equal division</em> divides the octave into 152 equally sized parts of 7.895 cents each. It is a strong 11-limit system, with the 3, 5, 7, and 11 slightly sharp. It provides the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for the 11-limit <a class="wiki_link" href="/Mirkwai%20clan">grendel</a> and <a class="wiki_link" href="/Mirkwai%20clan">kwai</a> linear temperaments, the 13-limit rank two temperament <a class="wiki_link" href="/Ragismic%20microtemperaments#Octoid-Octopus">octopus</a>, the planar temperament <a class="wiki_link" href="/Hemifamity%20family">laka</a>, and the rank five temperament tempering out 169/168. It tempers out 1600000/1594323, the amity comma, in the 5-limit; 4375/4374, 5120/5103, 6144/6125 and 16875/15807 in the 7-limit; 540/539, 1375/1372, 4000/3993, 5632/5625 and 9801/9800 in the 11-limit, and 169/168, 325/324, 351/350, 364/363, 1001/1000, and 4096/4095 in the 13-limit.<br />
| |
| <br />
| |
| <a class="wiki_link" href="/Paul%20Erlich">Paul Erlich</a> has suggested that 152 could be considered a sort of <a class="wiki_link_ext" href="http://tech.dir.groups.yahoo.com/neo/groups/tuning-math/conversations/topics/3041" rel="nofollow">universal tuning</a>.<br />
| |
| <br />
| |
| 152 = 8 * 19, with divisors 2, 4, 8, 19, 38, 76.</body></html></pre></div>
| |