Height: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 480001636 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
=Definition:=
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
A '''height''' is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement. For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no consensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-12-31 10:15:15 UTC</tt>.<br>
: The original revision id was <tt>480001636</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Definition:=  
A **height** is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement. For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no consensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.


A height function H(q) on the positive rationals q should fulfill the following criteria:
A height function H(q) on the positive rationals q should fulfill the following criteria:
# Given any constant C, there are finitely many elements q such that H(q) ≤ C.
 
# H(q) is bounded below by H(1), so that H(q) ≥ H(1) for all q.
<ol><li>Given any constant C, there are finitely many elements q such that H(q) ≤ C.</li><li>H(q) is bounded below by H(1), so that H(q) ≥ H(1) for all q.</li><li>H(q) = H(1) iff q = 1.</li><li>H(q) = H(1/q)</li><li>H(q^n) ≥ H(q) for any non-negative integer n</li></ol>
# H(q) = H(1) iff q = 1.
# H(q) = H(1/q)
# H(q^n) ≥ H(q) for any non-negative integer n


If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:
If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:
[[math]]
H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)
[[math]]


A **semi-height** is a function which does not obey criterion #3 above, so that there is a rational number q ≠ 1 such that H(q) = H(1), resulting in an equivalence relation on its elements, under which #1 is modified to a finite number of equivalence classes. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true:
<math>H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)</math>
[[math]]
 
2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q
A '''semi-height''' is a function which does not obey criterion #3 above, so that there is a rational number q ≠ 1 such that H(q) = H(1), resulting in an equivalence relation on its elements, under which #1 is modified to a finite number of equivalence classes. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true:
[[math]]
 
<math>2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q</math>


Or equivalently, if n has any integer solutions:
Or equivalently, if n has any integer solutions:
[[math]]
 
p = 2^n q
<math>p = 2^n q</math>
[[math]]


If the above condition is met, we may then establish the following equivalence relation:
If the above condition is met, we may then establish the following equivalence relation:
[[math]]
 
p \equiv q
<math>p \equiv q</math>
[[math]]


By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example.
By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example.
====== ======  
 
=Examples of Height Functions:=  
====== ======
|| __Name:__ || __Type:__ || __H(n/d):__ || __H(q):__ || __H(q) simplified by equivalence relation:__ ||
 
|| [[Benedetti Height|Benedetti height]]
=Examples of Height Functions:=
(or [[Tenney Height]]) || Height || [[math]]
 
n d
{| class="wikitable"
[[math]] || [[math]]
|-
2^{\large{\|q\|_{T1}}}
| | <u>Name:</u>
[[math]] || [[math]]
| | <u>Type:</u>
\|q\|_{T1}
| | <u>H(n/d):</u>
[[math]] ||
| | <u>H(q):</u>
|| Weil Height || Height || [[math]]
| | <u>H(q) simplified by equivalence relation:</u>
\max \left( {n , d} \right)
|-
[[math]] || [[math]]
| | [[Benedetti_height|Benedetti height]]
2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}}
 
[[math]] || [[math]]
(or [[Tenney_Height|Tenney Height]])
\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid
| | Height
[[math]] ||
| | <math>n d</math>
|| Arithmetic Height || Height || [[math]]
| | <math>2^{\large{\|q\|_{T1}}}</math>
n + d
| | <math>\|q\|_{T1}</math>
[[math]] || [[math]]
|-
\dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}
| | Weil Height
[[math]] || [[math]]
| | Height
\|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)
| | <math>\max \left( {n , d} \right)</math>
[[math]] ||
| | <math>2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}}</math>
|| Harmonic Height || Semi-Height || [[math]]
| | <math>\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid</math>
\dfrac {n d} {n + d}
|-
[[math]] || [[math]]
| | Arithmetic Height
\dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}
| | Height
[[math]] || [[math]]
| | <math>n + d</math>
\|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)
| | <math>\dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</math>
[[math]] ||
| | <math>\|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)</math>
|| [[Kees Height]] || Semi-Height || [[math]]
|-
\max \left( {2^{-v_2 \left( {n} \right)} n ,
| | Harmonic Height
2^{-v_2 \left( {d} \right)} d} \right)
| | Semi-Height
[[math]] || [[math]]
| | <math>\dfrac {n d} {n + d}</math>
2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(q) - v_2(q) \mid \right)\right)}}
| | <math>\dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</math>
[[math]] || [[math]]
| | <math>\|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)</math>
\|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |
|-
[[math]] ||
| | [[Kees_Height|Kees Height]]
Where ||q||&lt;span style="font-size: 80%; vertical-align: sub;"&gt;T1&lt;/span&gt; is the [[xenharmonic/Generalized Tenney Norms and Tp Interval Space#The%20Tenney%20Norm%20(T1%20norm)|tenney norm]] of q in monzo form, and v&lt;span style="vertical-align: sub;"&gt;p&lt;/span&gt;(x) is the [[http://en.wikipedia.org/wiki/P-adic_order|p-adic valuation]] of x.
| | Semi-Height
| | <math>\max \left( {2^{-v_2 \left( {n} \right)} n ,
2^{-v_2 \left( {d} \right)} d} \right)</math>
| | <math>2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(q) - v_2(q) \mid \right)\right)}}</math>
| | <math>\|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |</math>
|}
Where ||q||<span style="font-size: 80%; vertical-align: sub;">T1</span> is the [[Generalized_Tenney_Norms_and_Tp_Interval_Space#The Tenney Norm (T1 norm)|tenney norm]] of q in monzo form, and v<span style="vertical-align: sub;">p</span>(x) is the [http://en.wikipedia.org/wiki/P-adic_order p-adic valuation] of x.


Some useful identities:
Some useful identities:
[[math]]
n = 2^{\large{\frac{1}{2}(\|q\|_{T1} + \log_2(q))}}
[[math]]
[[math]]
d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}}
[[math]]
[[math]]
n d = 2^{\|q\|_{T1}}
[[math]]


Height functions can also be put on the points of [[http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html|projective varieties]]. Since [[Abstract regular temperament|abstract regular temperaments]] can be identified with rational points on [[http://en.wikipedia.org/wiki/Grassmannian|Grassmann varieties]], complexity measures of regular temperaments are also height functions.</pre></div>
<math>n = 2^{\large{\frac{1}{2}(\|q\|_{T1} + \log_2(q))}}</math>
<h4>Original HTML content:</h4>
 
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Height&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;Definition:&lt;/h1&gt;
<math>d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}}</math>
A &lt;strong&gt;height&lt;/strong&gt; is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement. For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no consensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.&lt;br /&gt;
&lt;br /&gt;
A height function H(q) on the positive rationals q should fulfill the following criteria:&lt;br /&gt;
&lt;ol&gt;&lt;li&gt;Given any constant C, there are finitely many elements q such that H(q) ≤ C.&lt;/li&gt;&lt;li&gt;H(q) is bounded below by H(1), so that H(q) ≥ H(1) for all q.&lt;/li&gt;&lt;li&gt;H(q) = H(1) iff q = 1.&lt;/li&gt;&lt;li&gt;H(q) = H(1/q)&lt;/li&gt;&lt;li&gt;H(q^n) ≥ H(q) for any non-negative integer n&lt;/li&gt;&lt;/ol&gt;&lt;br /&gt;
If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:0:
[[math]]&amp;lt;br/&amp;gt;
H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
&lt;br /&gt;
A &lt;strong&gt;semi-height&lt;/strong&gt; is a function which does not obey criterion #3 above, so that there is a rational number q ≠ 1 such that H(q) = H(1), resulting in an equivalence relation on its elements, under which #1 is modified to a finite number of equivalence classes. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:1:
[[math]]&amp;lt;br/&amp;gt;
2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:1 --&gt;&lt;br /&gt;
&lt;br /&gt;
Or equivalently, if n has any integer solutions:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:2:
[[math]]&amp;lt;br/&amp;gt;
p = 2^n q&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;p = 2^n q&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:2 --&gt;&lt;br /&gt;
&lt;br /&gt;
If the above condition is met, we may then establish the following equivalence relation:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:3:
[[math]]&amp;lt;br/&amp;gt;
p \equiv q&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;p \equiv q&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:3 --&gt;&lt;br /&gt;
&lt;br /&gt;
By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example.&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h6&amp;gt; --&gt;&lt;h6 id="toc1"&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt; &lt;/h6&gt;
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Examples of Height Functions:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;Examples of Height Functions:&lt;/h1&gt;


&lt;table class="wiki_table"&gt;
<math>n d = 2^{\|q\|_{T1}}</math>
    &lt;tr&gt;
        &lt;td&gt;&lt;u&gt;Name:&lt;/u&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;u&gt;Type:&lt;/u&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;u&gt;H(n/d):&lt;/u&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;u&gt;H(q):&lt;/u&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;u&gt;H(q) simplified by equivalence relation:&lt;/u&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/Benedetti%20Height"&gt;Benedetti height&lt;/a&gt;&lt;br /&gt;
(or &lt;a class="wiki_link" href="/Tenney%20Height"&gt;Tenney Height&lt;/a&gt;)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Height&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:4:
[[math]]&amp;lt;br/&amp;gt;
n d&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;n d&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:4 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:5:
[[math]]&amp;lt;br/&amp;gt;
2^{\large{\|q\|_{T1}}}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;2^{\large{\|q\|_{T1}}}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:5 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:6:
[[math]]&amp;lt;br/&amp;gt;
\|q\|_{T1}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\|q\|_{T1}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:6 --&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Weil Height&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Height&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:7:
[[math]]&amp;lt;br/&amp;gt;
\max \left( {n , d} \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\max \left( {n , d} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:7 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:8:
[[math]]&amp;lt;br/&amp;gt;
2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:8 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:9:
[[math]]&amp;lt;br/&amp;gt;
\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:9 --&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Arithmetic Height&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Height&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:10:
[[math]]&amp;lt;br/&amp;gt;
n + d&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;n + d&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:10 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:11:
[[math]]&amp;lt;br/&amp;gt;
\dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:11 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:12:
[[math]]&amp;lt;br/&amp;gt;
\|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:12 --&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Harmonic Height&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Semi-Height&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:13:
[[math]]&amp;lt;br/&amp;gt;
\dfrac {n d} {n + d}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\dfrac {n d} {n + d}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:13 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:14:
[[math]]&amp;lt;br/&amp;gt;
\dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:14 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:15:
[[math]]&amp;lt;br/&amp;gt;
\|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:15 --&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/Kees%20Height"&gt;Kees Height&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Semi-Height&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:16:
[[math]]&amp;lt;br/&amp;gt;
\max \left( {2^{-v_2 \left( {n} \right)} n ,&amp;lt;br /&amp;gt;
2^{-v_2 \left( {d} \right)} d} \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\max \left( {2^{-v_2 \left( {n} \right)} n ,
2^{-v_2 \left( {d} \right)} d} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:16 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:17:
[[math]]&amp;lt;br/&amp;gt;
2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(q) - v_2(q) \mid \right)\right)}}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(q) - v_2(q) \mid \right)\right)}}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:17 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:18:
[[math]]&amp;lt;br/&amp;gt;
\|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:18 --&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


Where ||q||&lt;span style="font-size: 80%; vertical-align: sub;"&gt;T1&lt;/span&gt; is the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Generalized%20Tenney%20Norms%20and%20Tp%20Interval%20Space#The%20Tenney%20Norm%20(T1%20norm)"&gt;tenney norm&lt;/a&gt; of q in monzo form, and v&lt;span style="vertical-align: sub;"&gt;p&lt;/span&gt;(x) is the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/P-adic_order" rel="nofollow"&gt;p-adic valuation&lt;/a&gt; of x.&lt;br /&gt;
Height functions can also be put on the points of [http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html projective varieties]. Since [[Abstract_regular_temperament|abstract regular temperaments]] can be identified with rational points on [http://en.wikipedia.org/wiki/Grassmannian Grassmann varieties], complexity measures of regular temperaments are also height functions.
&lt;br /&gt;
[[Category:height]]
Some useful identities:&lt;br /&gt;
[[Category:math]]
&lt;!-- ws:start:WikiTextMathRule:19:
[[Category:measure]]
[[math]]&amp;lt;br/&amp;gt;
n = 2^{\large{\frac{1}{2}(\|q\|_{T1} + \log_2(q))}}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;n = 2^{\large{\frac{1}{2}(\|q\|_{T1} + \log_2(q))}}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:19 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:20:
[[math]]&amp;lt;br/&amp;gt;
d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:20 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:21:
[[math]]&amp;lt;br/&amp;gt;
n d = 2^{\|q\|_{T1}}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;n d = 2^{\|q\|_{T1}}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:21 --&gt;&lt;br /&gt;
&lt;br /&gt;
Height functions can also be put on the points of &lt;a class="wiki_link_ext" href="http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html" rel="nofollow"&gt;projective varieties&lt;/a&gt;. Since &lt;a class="wiki_link" href="/Abstract%20regular%20temperament"&gt;abstract regular temperaments&lt;/a&gt; can be identified with rational points on &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Grassmannian" rel="nofollow"&gt;Grassmann varieties&lt;/a&gt;, complexity measures of regular temperaments are also height functions.&lt;/body&gt;&lt;/html&gt;</pre></div>