41edo: Difference between revisions
→21st century: Add Bryan Deister's ''41edo groove'' (2025) |
m →Octave stretch or compression: add 24edf |
||
Line 1,463: | Line 1,463: | ||
What follows is a comparison of stretched- and compressed-octave 41edo tunings. | What follows is a comparison of stretched- and compressed-octave 41edo tunings. | ||
; [[24edf]] | |||
* Step size: 29.248{{c}}, octave size: 1199.17{{c}} | |||
Compressing the octave of 41edo by around 0.8{{c}} results in [[JND|unnoticeably]] improved primes 11, 17 and 23, but unnoticeably worse primes 2, 3, 5, 7, 13 and 19. This approximates all harmonics up to 16 within 7.6{{c}}. The tuning 24edf does this. | |||
{{Harmonics in equal|24|3|2|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 24edf}} | |||
{{Harmonics in equal|24|3|2|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 24edf (continued)}} | |||
; [[147ed12]] / [[106ed6]] / [[65edt]] | ; [[147ed12]] / [[106ed6]] / [[65edt]] |