72edo: Difference between revisions
m →Octave stretch or compression: add 42edf |
|||
Line 1,541: | Line 1,541: | ||
; [[114edt]] / [[ed5|167ed5]] | ; [[114edt]] / [[ed5|167ed5]] | ||
* Step size: 16.684{{c}}, octave size: 1201.23{{c}} | * Step size: 16.684{{c}}, octave size: 1201.23{{c}} | ||
Stretching the octave of 72edo by around 1.25{{c}} results in a [[JND|just-noticeably]] better primes 13 and | Stretching the octave of 72edo by around 1.25{{c}} results in a [[JND|just-noticeably]] better primes 13 and unnoticeably better primes 3, 5, and 7, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within 4.94{{c}}. The tuning 144edt does this. The tuning 167ed5 does this also, its octave differing from 114edt by only 0.05{{c}}. | ||
{{Harmonics in equal|114|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 114edt}} | {{Harmonics in equal|114|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 114edt}} | ||
{{Harmonics in equal|114|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 114edt (continued)}} | {{Harmonics in equal|114|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 114edt (continued)}} | ||
; [[42edf]] | |||
* Step size: 16.713{{c}}, octave size: 1203.35{{c}} | |||
Stretching the octave of 72edo by around 3{{c}} results in better primes 13, 19 and 23, but worse primes 2, 3, 5, 7, 11 and 17. This approximates all harmonics up to 16 within 8.14{{c}}. The tuning 42edf does this. | |||
{{Harmonics in equal|42|3|2|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42edf}} | |||
{{Harmonics in equal|42|3|2|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42edf (continued)}} | |||
== Scales == | == Scales == |