S-expression: Difference between revisions
No edit summary Tags: Mobile edit Mobile web edit |
No edit summary |
||
Line 1,397: | Line 1,397: | ||
| [[12376/12375]] | | [[12376/12375]] | ||
| 17 | | 17 | ||
|} | |||
=== Table of 1/5-square-particulars === | |||
Below is a table of 1/5-square-particulars in the 23-limit: | |||
{| class="wikitable center-all | |||
|- | |||
! S-expression | |||
! Interval relation | |||
! Ratio | |||
! Prime limit | |||
|- | |||
| S2*S3*S4*S5*S6 | |||
| ([[2/1]])/([[7/6]]) | |||
| [[12/7]] | |||
| 7 | |||
|- | |||
| S3*S4*S5*S6*S7 | |||
| ([[3/2]])/([[8/7]]) | |||
| [[21/16]] | |||
| 7 | |||
|- | |||
| S4*S5*S6*S7*S8 | |||
| ([[4/3]])/([[9/8]]) | |||
| [[32/27]] | |||
| 3 | |||
|- | |||
| S5*S6*S7*S8*S9 | |||
| ([[5/4]])/([[10/9]]) | |||
| [[9/8]] | |||
| 3 | |||
|- | |||
| S6*S7*S8*S9*S10 | |||
| ([[6/5]])/([[11/10]]) | |||
| [[12/11]] | |||
| 11 | |||
|- | |||
| S7*S8*S9*S10*S11 | |||
| ([[7/6]])/([[12/11]]) | |||
| [[77/72]] | |||
| 11 | |||
|- | |||
| S8*S9*S10*S11*S12 | |||
| ([[8/7]])/([[13/12]]) | |||
| [[96/91]] | |||
| 13 | |||
|- | |||
| S9*S10*S11*S12*S13 | |||
| ([[9/8]])/([[14/13]]) | |||
| [[117/112]] | |||
| 13 | |||
|- | |||
| S10*S11*S12*S13*S14 | |||
| ([[10/9]])/([[15/14]]) | |||
| [[28/27]] | |||
| 7 | |||
|- | |||
| S11*S12*S13*S14*S15 | |||
| ([[11/10]])/([[16/15]]) | |||
| [[33/32]] | |||
| 11 | |||
|- | |||
| S12*S13*S14*S15*S16 | |||
| ([[12/11]])/([[17/16]]) | |||
| [[192/187]] | |||
| 17 | |||
|- | |||
| S13*S14*S15*S16*S17 | |||
| ([[13/12]])/([[18/17]]) | |||
| [[221/216]] | |||
| 17 | |||
|- | |||
| S14*S15*S16*S17*S18 | |||
| ([[14/13]])/([[19/18]]) | |||
| [[252/247]] | |||
| 19 | |||
|- | |||
| S15*S16*S17*S18*S19 | |||
| ([[15/14]])/([[20/19]]) | |||
| [[57/56]] | |||
| 19 | |||
|- | |||
| S16*S17*S18*S19*S20 | |||
| ([[16/15]])/([[21/20]]) | |||
| [[64/63]] | |||
| 7 | |||
|- | |||
| S17*S18*S19*S20*S21 | |||
| ([[17/16]])/([[22/21]]) | |||
| [[357/352]] | |||
| 17 | |||
|- | |||
| S18*S19*S20*S21*S22 | |||
| ([[18/17]])/([[23/22]]) | |||
| [[396/391]] | |||
| 23 | |||
|- | |||
| S19*S20*S21*S22*S23 | |||
| ([[19/18]])/([[24/23]]) | |||
| [[437/432]] | |||
| 23 | |||
|- | |||
| S20*S21*S22*S23*S24 | |||
| ([[20/19]])/([[25/24]]) | |||
| [[96/95]] | |||
| 19 | |||
|- | |||
| S21*S22*S23*S24*S25 | |||
| ([[21/20]])/([[26/25]]) | |||
| [[105/104]] | |||
| 13 | |||
|- | |||
| S22*S23*S24*S25*S26 | |||
| ([[22/21]])/([[27/26]]) | |||
| [[572/567]] | |||
| 13 | |||
|- | |||
| S23*S24*S25*S26*S27 | |||
| ([[23/22]])/([[28/27]]) | |||
| [[621/616]] | |||
| 23 | |||
|- | |||
| S28*S29*S30*S31*S32 | |||
| ([[28/27]])/([[33/32]]) | |||
| [[896/891]] | |||
| 11 | |||
|- | |||
| S34*S35*S36*S37*S38 | |||
| ([[34/33]])/([[39/38]]) | |||
| [[1292/1287]] | |||
| 19 | |||
|- | |||
| S35*S36*S37*S38*S39 | |||
| ([[35/34]])/([[40/39]]) | |||
| [[273/272]] | |||
| 17 | |||
|- | |||
| S40*S41*S42*S43*S44 | |||
| ([[40/39]])/([[45/44]]) | |||
| [[352/351]] | |||
| 13 | |||
|- | |||
| S45*S46*S47*S48*S49 | |||
| ([[45/44]])/([[50/49]]) | |||
| [[441/440]] | |||
| 11 | |||
|- | |||
| S46*S47*S48*S49*S50 | |||
| ([[46/45]])/([[51/50]]) | |||
| [[460/459]] | |||
| 23 | |||
|- | |||
| S50*S51*S52*S53*S54 | |||
| ([[50/49]])/([[55/54]]) | |||
| [[540/539]] | |||
| 11 | |||
|- | |||
| S51*S52*S53*S54*S55 | |||
| ([[51/50]])/([[56/55]]) | |||
| [[561/560]] | |||
| 17 | |||
|- | |||
| S52*S53*S54*S55*S56 | |||
| ([[52/51]])/([[57/56]]) | |||
| [[2912/2907]] | |||
| 19 | |||
|- | |||
| S64*S65*S66*S67*S68 | |||
| ([[64/63]])/([[69/68]]) | |||
| [[4352/4347]] | |||
| 23 | |||
|- | |||
| S65*S66*S67*S68*S69 | |||
| ([[65/64]])/([[70/69]]) | |||
| [[897/896]] | |||
| 23 | |||
|- | |||
| S76*S77*S78*S79*S80 | |||
| ([[76/75]])/([[81/80]]) | |||
| [[1216/1215]] | |||
| 19 | |||
|- | |||
| S91*S92*S93*S94*S95 | |||
| ([[91/90]])/([[96/95]]) | |||
| [[1729/1728]] | |||
| 19 | |||
|- | |||
| <font style="font-size:0.79em">S100*S101*S102*S103*S104</font> | |||
| <font style="font-size:0.83em">([[100/99]])/([[105/104]])</font> | |||
| [[2080/2079]] | |||
| 13 | |||
|- | |||
| <font style="font-size:0.79em">S115*S116*S117*S118*S119</font> | |||
| <font style="font-size:0.79em">([[115/114]])/([[120/119]])</font> | |||
| [[2737/2736]] | |||
| 23 | |||
|- | |||
| <font style="font-size:0.79em">S121*S122*S123*S124*S125</font> | |||
| <font style="font-size:0.79em">([[121/120]])/([[126/125]])</font> | |||
| [[3025/3024]] | |||
| 11 | |||
|- | |||
| <font style="font-size:0.79em">S171*S172*S173*S174*S175</font> | |||
| <font style="font-size:0.79em">([[171/170]])/([[176/175]])</font> | |||
| [[5985/5984]] | |||
| 19 | |||
|} | |} | ||
Line 1,906: | Line 2,112: | ||
...where we use the notation S''k''<sup>''p''</sup> to mean (S''k'')<sup>''p''</sup> rather than S(''k''<sup>''p''</sup>) for convenience in the practical analysis of [[regular temperament]]s using [[S-expression]]s. | ...where we use the notation S''k''<sup>''p''</sup> to mean (S''k'')<sup>''p''</sup> rather than S(''k''<sup>''p''</sup>) for convenience in the practical analysis of [[regular temperament]]s using [[S-expression]]s. | ||
For tuning theory only integer ''k'' > 1 is of relevance. Technically, rational ''k'' other than 1 correspond to rational commas too; the most relevant case for tuning theory is that half-integer ''k'' work as an alternative notation for [[odd- | For tuning theory only integer ''k'' > 1 is of relevance. Technically, rational ''k'' other than 1 correspond to rational commas too; the most relevant case for tuning theory is that half-integer ''k'' work as an alternative notation for [[odd-particular]]s, though for intuitively understanding the notation, the method described in [[#Abstraction]] may be recommendable as having (in a mathematical sense) exact analogues for every infinite family of commas defined in terms of an analogue of an S-expression, for which the most musically fruitful example is O''k'' = (''k'' / (''k'' - 2))/((''k'' + 2) / ''k'') for odd ''k'' as relevant to [[no-twos subgroup temperaments]]. | ||
== Sk<sup>2</sup> * S(k + 1) and S(k - 1) * Sk<sup>2</sup> (lopsided commas) == | == Sk<sup>2</sup> * S(k + 1) and S(k - 1) * Sk<sup>2</sup> (lopsided commas) == |