16edo: Difference between revisions
Cmloegcmluin (talk | contribs) →Theory: remove "Logarithmic divisions of intervals" table for same reasons it was removed from 15edo: https://en.xen.wiki/w/Talk:15edo#Table%20of%20divisors |
No edit summary |
||
Line 11: | Line 11: | ||
== Theory == | == Theory == | ||
=== Composition theory === | |||
{{Todo|expand|inline=1}} | |||
* [[User:VectorGraphics/16edo theory|Vector's approach]] | |||
=== Tuning theory === | |||
In general, 16edo tends to better approximate the differences between odd [[harmonic]]s than odd harmonics themselves, though there are exceptions: it has a [[7/4|7/1]] which is only six cents sharp, and a [[5/4|5/1]] which is only eleven cents flat. Most low harmonics are tuned very flat, but some such as [[21/16|21]]:[[11/8|22]]:[[23/16|23]]:[[3/2|24]]:[[25/16|25]]:[[13/8|26]] are well in tune with each other. Having a flat tendency, 16et is best tuned with [[stretched octave]]s, which improve the accuracy of wide-voiced JI chords and [[rooted]] harmonics especially on inharmonic timbres such as bells and gamelans, with [[25edt]], [[41ed6]], and [[57ed12]] being good options. | In general, 16edo tends to better approximate the differences between odd [[harmonic]]s than odd harmonics themselves, though there are exceptions: it has a [[7/4|7/1]] which is only six cents sharp, and a [[5/4|5/1]] which is only eleven cents flat. Most low harmonics are tuned very flat, but some such as [[21/16|21]]:[[11/8|22]]:[[23/16|23]]:[[3/2|24]]:[[25/16|25]]:[[13/8|26]] are well in tune with each other. Having a flat tendency, 16et is best tuned with [[stretched octave]]s, which improve the accuracy of wide-voiced JI chords and [[rooted]] harmonics especially on inharmonic timbres such as bells and gamelans, with [[25edt]], [[41ed6]], and [[57ed12]] being good options. | ||
Four steps of 16edo gives the 300{{c}} minor third interval shared by [[12edo]] (and other multiples of [[4edo]]), and thus the familiar [[diminished seventh chord]] may be built on any scale step with 4 unique tetrads up to [[octave equivalence]]. | Four steps of 16edo gives the 300{{c}} minor third interval shared by [[12edo]] (and other multiples of [[4edo]]), and thus the familiar [[diminished seventh chord]] may be built on any scale step with 4 unique tetrads up to [[octave equivalence]]. | ||
=== Odd harmonics === | ==== Odd harmonics ==== | ||
{{Harmonics in equal|16}} | {{Harmonics in equal|16}} | ||