The Riemann zeta function and tuning/Vector's derivation: Difference between revisions

No edit summary
No edit summary
Line 43: Line 43:
[https://www.desmos.com/calculator/6388kalfmq $$ \mu_{c}\left(\sigma, x\right)=\sum_{k=1}^{\infty}\operatorname{Re}\left(k^{ix}\right)k^{-\sigma} $$]
[https://www.desmos.com/calculator/6388kalfmq $$ \mu_{c}\left(\sigma, x\right)=\sum_{k=1}^{\infty}\operatorname{Re}\left(k^{ix}\right)k^{-\sigma} $$]


k<sup>-σ</sup> is a real number, so its real part is equal to itself. Thus, by the rules of complex addition, we can simplify this as follows:
k<sup>-σ</sup> is a real number, so its real part is equal to itself. Thus we can simplify this as follows:


[https://www.desmos.com/calculator/l3q2dtd6xn $$ \mu_{c}\left(\sigma, x\right)=\sum_{k=1}^{\infty}\operatorname{Re}\left(k^{-\sigma+ix}\right) $$]
[https://www.desmos.com/calculator/l3q2dtd6xn $$ \mu_{c}\left(\sigma, x\right)=\sum_{k=1}^{\infty}\operatorname{Re}\left(k^{-\sigma+ix}\right) $$]