List of superparticular intervals: Difference between revisions
fixed typo |
No edit summary |
||
Line 1: | Line 1: | ||
This is a list of [[superparticular]] [[interval]]s ordered by [[prime limit]]. It reaches to the 127-limit and is complete up to the [[ | This is a list of [[superparticular]] [[interval]]s ordered by [[prime limit]]. It reaches to the 127-limit and is complete up to the [[31-limit]]. | ||
[[Wikipedia: Størmer's theorem|Størmer's theorem]] states that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than [[2/1]], [[3/2]], [[4/3]], and [[9/8]]. {{OEIS| A002071 }} gives the number of superparticular ratios in each prime limit, {{OEIS| A145604 }} shows the increment from limit to limit, and {{OEIS| A117581 }} gives the largest numerator for each prime limit (with some exceptions, such as the 23-limit, where the largest value is smaller than that of a smaller prime limit, in this case the 19-limit). | [[Wikipedia: Størmer's theorem|Størmer's theorem]] states that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than [[2/1]], [[3/2]], [[4/3]], and [[9/8]]. {{OEIS| A002071 }} gives the number of superparticular ratios in each prime limit, {{OEIS| A145604 }} shows the increment from limit to limit, and {{OEIS| A117581 }} gives the largest numerator for each prime limit (with some exceptions, such as the 23-limit, where the largest value is smaller than that of a smaller prime limit, in this case the 19-limit). | ||
Line 1,246: | Line 1,246: | ||
| S2431 | | S2431 | ||
|- | |- | ||
| 11859211/11859210 | | <font style="font-size:0.88em">11859211/11859210</font> | ||
| 0.00014598 | | 0.00014598 | ||
| (19/(3×11))<sup>4</sup>×((7×13)/(2×5)) | | (19/(3×11))<sup>4</sup>×((7×13)/(2×5)) | ||
Line 2,491: | Line 2,491: | ||
| | | | ||
|- | |- | ||
| 10556001/10556000 | | <font style="font-size:0.88em">10556001/10556000</font> | ||
| 0.00016400 | | 0.00016400 | ||
| (3×19)<sup>4</sup>/(2<sup>5</sup>×5<sup>3</sup>×7×13×29) | | (3×19)<sup>4</sup>/(2<sup>5</sup>×5<sup>3</sup>×7×13×29) | ||
Line 2,498: | Line 2,498: | ||
| S3249 | | S3249 | ||
|- | |- | ||
| 18085705/18085704 | | <font style="font-size:0.88em">18085705/18085704</font> | ||
| 9.5724×10<sup>-5</sup> | | 9.5724×10<sup>-5</sup> | ||
| (5×11×17×23×29<sup>2</sup>)/((2×7×13)<sup>3</sup>×3) | | (5×11×17×23×29<sup>2</sup>)/((2×7×13)<sup>3</sup>×3) | ||
Line 2,505: | Line 2,505: | ||
| | | | ||
|- | |- | ||
| 96059601/96059600 | | <font style="font-size:0.88em">96059601/96059600</font> | ||
| 1.8022×10<sup>-5</sup> | | 1.8022×10<sup>-5</sup> | ||
| (3<sup>2</sup>×11)<sup>4</sup>/((2<sup>2</sup>×5×7×13)<sup>2</sup>×29) | | (3<sup>2</sup>×11)<sup>4</sup>/((2<sup>2</sup>×5×7×13)<sup>2</sup>×29) | ||
Line 2,512: | Line 2,512: | ||
| S9801 | | S9801 | ||
|- | |- | ||
| 177182721/177182720 | | <font style="font-size:0.79em">177182721/177182720</font> | ||
| 9.7709×10<sup>-6</sup> | | 9.7709×10<sup>-6</sup> | ||
| (3<sup>3</sup>×17×29)<sup>2</sup>/(2<sup>11</sup>×5×11<sup>3</sup>×13) | | (3<sup>3</sup>×17×29)<sup>2</sup>/(2<sup>11</sup>×5×11<sup>3</sup>×13) | ||
Line 2,520: | Line 2,520: | ||
|} | |} | ||
=== 31-limit | === 31-limit === | ||
{| class="wikitable center-6" style="width:100%" | {| class="wikitable center-6" style="width:100%" | ||
! width="10%" | [[Ratio]] | ! width="10%" | [[Ratio]] | ||
Line 3,380: | Line 3,380: | ||
| (2<sup>6</sup>×3×19<sup>2</sup>×23)/((5×11)<sup>2</sup>×17×31) | | (2<sup>6</sup>×3×19<sup>2</sup>×23)/((5×11)<sup>2</sup>×17×31) | ||
| 2.3.5.11.17.19.23.31 {{monzo| 6 1 -2 -2 -1 2 1 -1 }} | | 2.3.5.11.17.19.23.31 {{monzo| 6 1 -2 -2 -1 2 1 -1 }} | ||
| | |||
| | |||
|- | |||
| 2307361/2307360 | |||
| 0.00075031 | |||
| (7<sup>2</sup>×31)<sup>2</sup>/(2<sup>5</sup>×3×5×11×19×23) | |||
| 2.3.5.7.11.19.23.31 {{monzo| -5 -1 -1 4 -1 -1 -1 2 }} | |||
| | |||
| S1519 | |||
|- | |||
| 2310400/2310399 | |||
| 0.00074932 | |||
| ((2<sup>4</sup>×5×19)/(3×7×13))<sup>2</sup>/31 | |||
| 2.3.5.7.13.19.31 {{monzo| 8 -2 2 -2 -2 2 -1 }} | |||
| | |||
| S1520 | |||
|- | |||
| 2345057/2345056 | |||
| 0.00073825 | |||
| (11×13×23<sup>2</sup>×31)/(2<sup>5</sup>×7×19<sup>2</sup>×29) | |||
| 2.7.11.13.19.23.29.31 {{monzo| -5 -1 1 1 -2 2 -1 1 }} | |||
| | |||
| | |||
|- | |||
| 3206269/3206268 | |||
| 0.00053995 | |||
| (11×19×23<sup>2</sup>×29)/((2×3×13)<sup>2</sup>×17×31) | |||
| 2.3.11.13.17.19.23.29.31 {{monzo| -2 -2 1 -2 -1 1 2 1 -1 }} | |||
| | |||
| | |||
|- | |||
| 3301376/3301375 | |||
| 0.00052440 | |||
| (2<sup>13</sup>×13×31)/(5<sup>3</sup>×7<sup>4</sup>×11) | |||
| 2.5.7.11.13.31 {{monzo| 13 -3 -4 -1 1 1 }} | |||
| | |||
| | |||
|- | |||
| 3346110/3346109 | |||
| 0.00051739 | |||
| (2×3<sup>9</sup>×5×17)/(13×19<sup>2</sup>×23×31) | |||
| 2.3.5.13.17.19.23.31 {{monzo| 1 9 1 -1 1 -2 -1 -1 }} | |||
| | |||
| | |||
|- | |||
| 3897166/3897165 | |||
| 0.00044423 | |||
| (2×7<sup>3</sup>×13×19×23)/(3×5×17<sup>2</sup>×29×31) | |||
| 2.3.5.7.13.17.19.23.29.31 {{monzo| 1 -1 -1 3 1 -2 1 1 -1 -1 }} | |||
| | |||
| | |||
|- | |||
| <font style="font-size:0.88em">14753025/14753024</font> | |||
| 0.00011735 | |||
| ((3×5)<sup>2</sup>×7×17×19×29)/(2<sup>8</sup>×11×13<sup>2</sup>×31) | |||
| 2.3.5.7.11.13.17.19.29.31 {{monzo| -8 2 2 1 -1 -2 1 1 1 -1 }} | |||
| | |||
| | |||
|- | |||
| <font style="font-size:0.88em">16093000/16092999</font> | |||
| 0.00010758 | |||
| ((2×5)<sup>3</sup>×7×11<sup>2</sup>×19)/(3<sup>4</sup>×13×17×29×31) | |||
| 2.3.5.7.11.13.17.19.29.31 {{monzo| 3 -4 3 1 2 -1 -1 1 -1 -1 }} | |||
| | |||
| | |||
|- | |||
| <font style="font-size:0.88em">76271625/76271624</font> | |||
| 2.2698×10<sup>-5</sup> | |||
| (3<sup>9</sup>×5<sup>3</sup>×31)/((2×11)<sup>3</sup>×13×19×29) | |||
| 2.3.5.11.13.19.29.31 {{monzo| -3 9 3 -3 -1 -1 -1 1 }} | |||
| | |||
| | |||
|- | |||
| <font style="font-size:0.88em">80061345/80061344</font> | |||
| 2.1624×10<sup>-5</sup> | |||
| (3<sup>3</sup>×5×7<sup>4</sup>×13×19)/(2<sup>5</sup>×11<sup>2</sup>×23×29×31) | |||
| 2.3.5.7.11.13.19.23.29.31 {{monzo| -5 3 1 4 -2 1 1 -1 -1 -1 }} | |||
| | |||
| | |||
|- | |||
| <font style="font-size:0.79em">133920000/133919999</font> | |||
| 1.2927×10<sup>-5</sup> | |||
| (2<sup>8</sup>×3<sup>3</sup>×5<sup>4</sup>×31)/(17<sup>2</sup>×19×29<sup>3</sup>) | |||
| 2.3.5.17.19.29.31 {{monzo| 8 3 4 -2 -1 -3 1 }} | |||
| | |||
| | |||
|- | |||
| <font style="font-size:0.79em">181037025/181037024</font> | |||
| 9.5629×10<sup>-6</sup> | |||
| (3<sup>2</sup>×5×13×23)<sup>2</sup>/(2<sup>5</sup>×7×(29×31)<sup>2</sup>) | |||
| 2.3.5.7.13.23.29.31 {{monzo| -5 4 2 -1 2 2 -2 -2 }} | |||
| | |||
| S13455 | |||
|- | |||
| <font style="font-size:0.79em">370256250/370256249</font> | |||
| 4.6758×10<sup>-6</sup> | |||
| (2×3×5<sup>5</sup>×7<sup>2</sup>×13×31)/(11<sup>7</sup>×19) | |||
| 2.3.5.7.11.13.19.31 {{monzo| 1 1 5 2 -7 1 -1 1 }} | |||
| | |||
| | |||
|- | |||
| <font style="font-size:0.72em">1611308700/1611308699</font> | |||
| 1.0744×10<sup>-6</sup> | |||
| ((2×3<sup>3</sup>×5×31)/(7<sup>2</sup>×13×19))<sup>2</sup>×(23/11) | |||
| 2.3.5.7.11.13.19.23.31 {{monzo| 2 6 2 -4 -1 -2 -2 1 2 }} | |||
| | | | ||
| | | | ||
Line 5,181: | Line 5,286: | ||
| S71 | | S71 | ||
|- | |- | ||
| [[Borcherdsma|160561400000 / 160561399999]] | | <font style="font-size:0.60em">[[Borcherdsma|160561400000/160561399999]]</font> | ||
| 1.0783×10<sup>-8</sup> | | 1.0783×10<sup>-8</sup> | ||
| (2<sup>6</sup>×5<sup>5</sup>×19×29×31×47) / (7×11<sup>2</sup>×13×59<sup>3</sup>×71) | | (2<sup>6</sup>×5<sup>5</sup>×19×29×31×47) / (7×11<sup>2</sup>×13×59<sup>3</sup>×71) |