Mu badness: Difference between revisions
Jump to navigation
Jump to search
Created page with "TRYING TO TEST HOW MATH WORKS PAGE IS WIP (DON'T DELETE) <math>\sum_{\substack{2 \leq q \leq p \\ q \text{ prime}}} \left(\frac{\rround{x \log_2 q}}{\log_2 q}\right)^2</math>" |
No edit summary |
||
Line 1: | Line 1: | ||
Mu is a function for equal tuning badness provided by Vector Graphics. | |||
<math>\sum_{\ | It is defined as: | ||
<math>\mu\left(x\right)=\sum_{k=1}^{\infty}f\left(x,k\right)</math> | |||
where | |||
<math>f\left(x,k\right)=\frac{\operatorname{abs}\left(\operatorname{mod}\left(2g\left(k\right)x,2\right)-1\right)}{k^{2}}</math> |
Revision as of 17:31, 11 March 2025
Mu is a function for equal tuning badness provided by Vector Graphics.
It is defined as:
[math]\displaystyle{ \mu\left(x\right)=\sum_{k=1}^{\infty}f\left(x,k\right) }[/math]
where
[math]\displaystyle{ f\left(x,k\right)=\frac{\operatorname{abs}\left(\operatorname{mod}\left(2g\left(k\right)x,2\right)-1\right)}{k^{2}} }[/math]