33edo: Difference between revisions

ArrowHead294 (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
mNo edit summary
Line 11: Line 11:
While relatively uncommon, 33edo is actually quite an interesting system. As a multiple of [[11edo]], it approximates the 7th and 11th harmonics via [[orgone]] temperament (see [[26edo]]). 33edo also tunes the 13th harmonic slightly flat, allowing it to approximate the 21st and 17th harmonics as well, having a [[3L 7s]] with {{nowrap|L {{=}} 4|s {{=}} 3}}. The 33c ({{val| 33 52 76 93 }}) and 33cd ({{val| 33 52 76 92 }}) mappings temper out [[81/80]] and can be used to represent [[1/2-comma meantone]], a [[Meantone family#Flattertone|"flattertone"]] tuning where the whole tone is [[10/9]] in size. Indeed, the perfect fifth is tuned about 11{{c}} flat, and two stacked fifths fall only 0.6{{c}} flat of 10/9. Leaving the scale be would result in the standard diatonic scale ([[5L 2s]]) having minor seconds of four steps and whole tones of five steps. This also results in common practice minor and major chords becoming more supraminor and submajor in character, making everything sound almost neutral in quality.
While relatively uncommon, 33edo is actually quite an interesting system. As a multiple of [[11edo]], it approximates the 7th and 11th harmonics via [[orgone]] temperament (see [[26edo]]). 33edo also tunes the 13th harmonic slightly flat, allowing it to approximate the 21st and 17th harmonics as well, having a [[3L 7s]] with {{nowrap|L {{=}} 4|s {{=}} 3}}. The 33c ({{val| 33 52 76 93 }}) and 33cd ({{val| 33 52 76 92 }}) mappings temper out [[81/80]] and can be used to represent [[1/2-comma meantone]], a [[Meantone family#Flattertone|"flattertone"]] tuning where the whole tone is [[10/9]] in size. Indeed, the perfect fifth is tuned about 11{{c}} flat, and two stacked fifths fall only 0.6{{c}} flat of 10/9. Leaving the scale be would result in the standard diatonic scale ([[5L 2s]]) having minor seconds of four steps and whole tones of five steps. This also results in common practice minor and major chords becoming more supraminor and submajor in character, making everything sound almost neutral in quality.


Instead of the flat 19-step fifth you may use the 20-step sharp fifth, over 25{{c}} sharp. Two of these lead to a 9/8 of 7\33, which is about 22/19 in size and may be counted as a small third. Between the flat 5\33 version of 9/8 and the sharp 7\33 version there is, of course, a {{nowrap|6\33 {{=}} 2\[[11edo|11]]}} interval of 218{{c}}. Together, these add up to {{nowrap|6\33 + 5\33 {{=}} 11\33 {{=}} 1\3}}, or 400{{c}}, the same major third as 12edo. We also have both a 327¢ minor third ({{nowrap|9\33 {{=}} 6\22 {{=}} 3\11}}), the same as that of [[22edo]], and a flatter 8\33 third of 291{{c}}, which if you like could also be called a flat 19th harmonic, but much more accurately a 13/11 sharp by 1.7{{c}} (if you use the patent val it is an extremely inaccurate 6/5). Another talent it has is that 7/5 is tuned quite accurately by 16\33, and we may put two 8\33 versions of 13/11 together to produce the [[cuthbert triad]]. The 8\33 generator, with MOS of size 5, 9, and 13, gives plenty of scope for these, as well as the 11th, 13th, and 19th harmonics (taking the generator as a 19/16) which are relatively well in tune.
Instead of the flat 19-step fifth you may use the 20-step sharp fifth, over 25{{c}} sharp. Two of these lead to a 9/8 of 7\33, which is about 22/19 in size and may be counted as a small third. Between the flat 5\33 version of 9/8 and the sharp 7\33 version there is, of course, a {{nowrap|6\33 {{=}} 2\[[11edo|11]]}} interval of 218{{c}}. Together, these add up to {{nowrap|6\33 + 5\33 {{=}} 11\33 {{=}} 1\3}}, or 400{{c}}, the same major third as 12edo. We also have both a 327{{c}} minor third ({{nowrap|9\33 {{=}} 6\22 {{=}} 3\11}}), the same as that of [[22edo]], and a flatter 8\33 third of 291{{c}}, which if you like could also be called a flat 19th harmonic, but much more accurately a 13/11 sharp by 1.7{{c}} (if you use the patent val it is an extremely inaccurate 6/5). Another talent it has is that 7/5 is tuned quite accurately by 16\33, and we may put two 8\33 versions of 13/11 together to produce the [[cuthbert triad]]. The 8\33 generator, with MOS of size 5, 9, and 13, gives plenty of scope for these, as well as the 11th, 13th, and 19th harmonics (taking the generator as a 19/16) which are relatively well in tune.


33edo contains an accurate approximation of the Bohlen-Pierce scale with 4\33 near 1\[[13edt]].
33edo contains an accurate approximation of the Bohlen-Pierce scale with 4\33 near 1\[[13edt]].


Other notable 33edo scales are [[diasem]] with {{nowrap|L:m:s {{=}} 5:3:1}} and [[5L 4s]] with {{nowrap|L:s {{=}} 5:2}}. This step ratio for 5L 4s is great for its semitone size of 72..
Other notable 33edo scales are [[diasem]] with {{nowrap|L:m:s {{=}} 5:3:1}} and [[5L 4s]] with {{nowrap|L:s {{=}} 5:2}}. This step ratio for 5L 4s is great for its semitone size of 72.7{{c}}.


33 is also the number of years in the Iranian calendar's leap cycle, where leap year is inserted once every 4 or 5 years. This corresponds to the [[1L 7s]] with the step ratio of 5:4.
33 is also the number of years in the Iranian calendar's leap cycle, where leap year is inserted once every 4 or 5 years. This corresponds to the [[1L 7s]] with the step ratio of 5:4.
Line 33: Line 33:
|-
|-
| 0
| 0
|
| 0
| [[1/1]]
| [[1/1]]
| 0
| 0