User:Godtone/Augmented-chromatic equivalence continuum: Difference between revisions

Godtone (talk | contribs)
m correction in title
Godtone (talk | contribs)
m 3 & 118 is named squarschmidt
Line 145: Line 145:
|-
|-
| 7/4
| 7/4
| {{nowrap|3 & 118}}
| [[squarschmidt]] ({{nowrap|3 & 118}})
| [[186773283746309210112/186264514923095703125|(42 digits)]]
| [[186773283746309210112/186264514923095703125|(42 digits)]]
| {{ monzo| 61 4 -29 }}
| {{ monzo| 61 4 -29 }}
Line 156: Line 156:
The simplest of these other than [[Würschmidt]] is [[mutt]] which has interesting properties discussed there. In regards to mutt, the fact that the denominator of ''n'' is a multiple of 3 tells us that it has a 1\3 period because it's contained in 3edo. The fact that the numerator is 5 tells us that 25/24 is split into 5 parts. From {{nowrap|(128/125)<sup>n</sup> {{=}} 25/24}} we can thus deduce that each part is thus equal to ~cbrt(128/125) = (128/125)<sup>1/3</sup>, so that ~5/4 is found at 1\3 minus a third of a diesis, so that ~125/64 is found at thrice that. This observation is more general, leading to consideration of temperaments of third-integer ''n''. (Note that [[ditonic]] at ''n'' = 3/2 is included as an alternative approximation of ''n'' = ~1.7... as it finds relevance in [[53edo]], whose 5-limit is exceptionally accurate for its note count, but also because its increased complexity relative to Würschmidt allows it to spread damage over more generators.)
The simplest of these other than [[Würschmidt]] is [[mutt]] which has interesting properties discussed there. In regards to mutt, the fact that the denominator of ''n'' is a multiple of 3 tells us that it has a 1\3 period because it's contained in 3edo. The fact that the numerator is 5 tells us that 25/24 is split into 5 parts. From {{nowrap|(128/125)<sup>n</sup> {{=}} 25/24}} we can thus deduce that each part is thus equal to ~cbrt(128/125) = (128/125)<sup>1/3</sup>, so that ~5/4 is found at 1\3 minus a third of a diesis, so that ~125/64 is found at thrice that. This observation is more general, leading to consideration of temperaments of third-integer ''n''. (Note that [[ditonic]] at ''n'' = 3/2 is included as an alternative approximation of ''n'' = ~1.7... as it finds relevance in [[53edo]], whose 5-limit is exceptionally accurate for its note count, but also because its increased complexity relative to Würschmidt allows it to spread damage over more generators.)


The 3 & 118 microtemperament is at ''n'' = 7/4. Its generator is approximately 397{{cent}} so that four generators reaches 5/2, corresponding to the denominator of 4. The number of generators of ~(5/2)<sup>1/4</sup> needed to find prime 3 is thus four times the result of plugging ''n'' = 7/4 into 3''n'' + 2 , which is 3(7/4) + 2 = 21/4 + 8/4 = 29/4, that is, 29 generators.
The 3 & 118 microtemperament [[squarschmidt]] is at ''n'' = 7/4. Its generator is approximately 397{{cent}} so that four generators reaches 5/2, corresponding to the denominator of 4. The number of generators of ~(5/2)<sup>1/4</sup> needed to find prime 3 is thus four times the result of plugging ''n'' = 7/4 into 3''n'' + 2 , which is 3(7/4) + 2 = 21/4 + 8/4 = 29/4, that is, 29 generators.


Finally, the 3 & 612 microtemperament at ''n'' = 12/7 is extremely complex, because to find prime 5, you need 7 times 3(12/7) + 2 = 36/7 + 14/7 = 50/7, that is, 50 generators, and is noted only because of being extremely close to the JIP and being supported by the 5-limit microtemperament [[612edo]]. The denominator of 7 indicates that 128/125 is split into 7 equal parts.
Finally, the 3 & 612 microtemperament at ''n'' = 12/7 is extremely complex, because to find prime 5, you need 7 times 3(12/7) + 2 = 36/7 + 14/7 = 50/7, that is, 50 generators, and is noted only because of being extremely close to the JIP and being supported by the 5-limit microtemperament [[612edo]]. The denominator of 7 indicates that 128/125 is split into 7 equal parts.