69edo: Difference between revisions
Dave Keenan (talk | contribs) →Sagittal notation: Moved the explanation of ≈ to the end of the section. |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
69edo has been called "the love-child of [[23edo]] and [[quarter-comma meantone]]". As a meantone system, it is on the flat side, with a fifth of 695.652 | 69edo has been called "the love-child of [[23edo]] and [[quarter-comma meantone]]". As a meantone system, it is on the flat side, with a fifth of 695.652{{c}}. Such a fifth is closer to [[2/7-comma meantone]] than 1/4-comma, and is nearly identical to that of "Synch-Meantone", or Wilson's equal beating meantone, wherein the perfect fifth and the major third beat at equal rates. Therefore 69edo can be treated as a closed system of Synch-Meantone for most purposes. | ||
69edo offers two kinds of meantone 12-tone scales. One is the raw meantone scale, which has a 7:4 step ratio, and other is period-3 [[Meantone family#Lithium|lithium]] scale, which has a 6:5 step ratio and stems from a temperament tempering out 3125/3087 along with 81/80. It should be noted that while the lithium scale has a meantone fifth, it produces a [[3L 6s|tcherepnin]] scale instead of traditional diatonic. | 69edo offers two kinds of meantone 12-tone scales. One is the raw meantone scale, which has a 7:4 step ratio, and other is period-3 [[Meantone family#Lithium|lithium]] scale, which has a 6:5 step ratio and stems from a temperament tempering out 3125/3087 along with 81/80. It should be noted that while the lithium scale has a meantone fifth, it produces a [[3L 6s|tcherepnin]] scale instead of traditional diatonic. | ||
In the [[7-limit]] it is a [[mohajira]] system, tempering out 6144/6125, but not a septimal meantone system, as [[126/125]] maps to one step. In the 11-limit it tempers out [[99/98]], and supports the 31&69 variant of mohajira, identical to the standard 11-limit mohajira in [[31edo]] but not in 69. | In the [[7-limit]] it is a [[mohajira]] system, tempering out 6144/6125, but not a septimal meantone system, as [[126/125]] maps to one step. In the 11-limit it tempers out [[99/98]], and supports the {{nowrap|31 & 69}} variant of mohajira, identical to the standard 11-limit mohajira in [[31edo]] but not in 69. | ||
The [[concoctic scale]] for 69edo is 22\69, and the corresponding rank two temperament is 22 & 69, defined by tempering out the [-41, 1, 17⟩ comma in the 5-limit. | The [[concoctic scale]] for 69edo is 22\69, and the corresponding rank two temperament is {{nowrap|22 & 69}}, defined by tempering out the [-41, 1, 17⟩ comma in the 5-limit. | ||
=== Odd harmonics === | === Odd harmonics === | ||
Line 26: | Line 25: | ||
! Error (abs, [[cent|¢]]) | ! Error (abs, [[cent|¢]]) | ||
|- | |- | ||
|0 | | 0 | ||
|Natural Unison, 1 | | Natural Unison, 1 | ||
|0.000 | | 0.000 | ||
|[[1/1]] | | [[1/1]] | ||
|0.000 | | 0.000 | ||
|- | |- | ||
|1 | | 1 | ||
|Ptolemy's comma | | Ptolemy's comma | ||
|17.391 | | 17.391 | ||
|[[100/99]] | | [[100/99]] | ||
| | | −0.008 | ||
|- | |- | ||
|2 | | 2 | ||
|Jubilisma, lesser septimal sixth tone | | Jubilisma, lesser septimal sixth tone | ||
|34.783 | | 34.783 | ||
|[[50/49]], [[101/99]] | | [[50/49]], [[101/99]] | ||
| | | −0.193, 0.157 | ||
|- | |- | ||
|3 | | 3 | ||
|lesser septendecimal quartertone, _____ | | lesser septendecimal quartertone, _____ | ||
|52.174 | | 52.174 | ||
|[[34/33]], [[101/98]] | | [[34/33]], [[101/98]] | ||
| 0.491, | | 0.491, −0.028 | ||
|- | |- | ||
|4 | | 4 | ||
|_____ | | _____ | ||
|69.565 | | 69.565 | ||
|[[76/73]] | | [[76/73]] | ||
| | | −0.158 | ||
|- | |- | ||
|5 | | 5 | ||
|Small undevicesimal semitone | | Small undevicesimal semitone | ||
|86.957 | | 86.957 | ||
|[[20/19]] | | [[20/19]] | ||
| | | −1.844 | ||
|- | |- | ||
|6 | | 6 | ||
|Large septendecimal semitone | | Large septendecimal semitone | ||
|104.348 | | 104.348 | ||
|[[17/16]] | | [[17/16]] | ||
| | | −0.608 | ||
|- | |- | ||
|7 | | 7 | ||
|Septimal diatonic semitone | | Septimal diatonic semitone | ||
|121.739 | | 121.739 | ||
|[[15/14]] | | [[15/14]] | ||
|2.296 | | 2.296 | ||
|- | |- | ||
|8 | | 8 | ||
|Tridecimal neutral second | | Tridecimal neutral second | ||
|139.130 | | 139.130 | ||
|[[13/12]] | | [[13/12]] | ||
|0.558 | | 0.558 | ||
|- | |- | ||
|9 | | 9 | ||
|Vicesimotertial neutral second | | Vicesimotertial neutral second | ||
|156.522 | | 156.522 | ||
|[[23/21]] | | [[23/21]] | ||
| | | −0.972 | ||
|- | |- | ||
|10 | | 10 | ||
| Undevicesimal large neutral second, undevicesimal whole tone | | Undevicesimal large neutral second, undevicesimal whole tone | ||
|173.913 | | 173.913 | ||
|[[21/19]] | | [[21/19]] | ||
|0.645 | | 0.645 | ||
|- | |- | ||
|11 | | 11 | ||
|Quasi-meantone | | Quasi-meantone | ||
|191.304 | | 191.304 | ||
|[[19/17]] | | [[19/17]] | ||
| | | −1.253 | ||
|- | |- | ||
|12 | | 12 | ||
|Whole tone | | Whole tone | ||
|208.696 | | 208.696 | ||
|[[9/8]] | | [[9/8]] | ||
|4.786 | | 4.786 | ||
|- | |- | ||
|13 | | 13 | ||
|Septimal whole tone | | Septimal whole tone | ||
|226.087 | | 226.087 | ||
|[[8/7]] | | [[8/7]] | ||
| | | −5.087 | ||
|- | |- | ||
|14 | | 14 | ||
|Vicesimotertial semifourth | | Vicesimotertial semifourth | ||
|243.478 | | 243.478 | ||
|[[23/20]] | | [[23/20]] | ||
|1.518 | | 1.518 | ||
|- | |- | ||
|15 | | 15 | ||
|Subminor third, undetricesimal subminor third | | Subminor third, undetricesimal subminor third | ||
|260.870 | | 260.870 | ||
|[[7/6]], [[29/25]] | | [[7/6]], [[29/25]] | ||
| | | −6.001, 3.920 | ||
|- | |- | ||
|16 | | 16 | ||
| Vicesimotertial subminor third | | Vicesimotertial subminor third | ||
|278.261 | | 278.261 | ||
|[[27/23]] | | [[27/23]] | ||
|0.670 | | 0.670 | ||
|- | |- | ||
|17 | | 17 | ||
|Pythagorean minor third | | Pythagorean minor third | ||
|295.652 | | 295.652 | ||
|[[32/27]] | | [[32/27]] | ||
|1.517 | | 1.517 | ||
|- | |- | ||
|18 | | 18 | ||
|Classic minor third | | Classic minor third | ||
|313.043 | | 313.043 | ||
|[[6/5]] | | [[6/5]] | ||
| | | −2.598 | ||
|- | |- | ||
|19 | | 19 | ||
|Vicesimotertial supraminor third | | Vicesimotertial supraminor third | ||
|330.435 | | 330.435 | ||
|[[23/19]] | | [[23/19]] | ||
| | | −0.327 | ||
|- | |- | ||
|20 | | 20 | ||
|Undecimal neutral third | | Undecimal neutral third | ||
|347.826 | | 347.826 | ||
|[[11/9]] | | [[11/9]] | ||
|0.418 | | 0.418 | ||
|- | |- | ||
|21 | | 21 | ||
|Septendecimal submajor third | | Septendecimal submajor third | ||
|365.217 | | 365.217 | ||
|[[21/17]] | | [[21/17]] | ||
| | | −0.608 | ||
|- | |- | ||
|22 | | 22 | ||
|Classic major third | | Classic major third | ||
|382.609 | | 382.609 | ||
|[[5/4]] | | [[5/4]] | ||
| | | −3.705 | ||
|- | |- | ||
|23 | | 23 | ||
| Undetricesimal major third, Septendecimal major third | | Undetricesimal major third, Septendecimal major third | ||
|400.000 | | 400.000 | ||
|[[29/23]], [[34/27]] | | [[29/23]], [[34/27]] | ||
| | | −1.303, 0.910 | ||
|- | |- | ||
|24 | | 24 | ||
|Undecimal major third | | Undecimal major third | ||
|417.391 | | 417.391 | ||
|[[14/11]] | | [[14/11]] | ||
| | | −0.117 | ||
|- | |- | ||
|25 | | 25 | ||
|Supermajor third | | Supermajor third | ||
|434.783 | | 434.783 | ||
|[[9/7]] | | [[9/7]] | ||
| | | −0.301 | ||
|- | |- | ||
|26 | | 26 | ||
|Barbados third | | Barbados third | ||
|452.174 | | 452.174 | ||
|[[13/10]] | | [[13/10]] | ||
| | | −2.040 | ||
|- | |- | ||
|27 | | 27 | ||
|Septimal sub-fourth | | Septimal sub-fourth | ||
|469.565 | | 469.565 | ||
|[[21/16]] | | [[21/16]] | ||
| | | −1.216 | ||
|- | |- | ||
|28 | | 28 | ||
|_____ | | _____ | ||
|486.957 | | 486.957 | ||
|[[53/40]] | | [[53/40]] | ||
| | | −0.234 | ||
|- | |- | ||
|29 | | 29 | ||
|Just perfect fourth | | Just perfect fourth | ||
|504.348 | | 504.348 | ||
|[[4/3]] | | [[4/3]] | ||
|6.303 | | 6.303 | ||
|- | |- | ||
|30 | | 30 | ||
|Vicesimotertial acute fourth | | Vicesimotertial acute fourth | ||
|521.739 | | 521.739 | ||
|[[23/17]] | | [[23/17]] | ||
| | | −1.580 | ||
|- | |- | ||
|31 | | 31 | ||
|Undecimal augmented fourth | | Undecimal augmented fourth | ||
|539.130 | | 539.130 | ||
|[[15/11]] | | [[15/11]] | ||
|2.180 | | 2.180 | ||
|- | |- | ||
|32 | | 32 | ||
|Undecimal superfourth, undetricesimal superfourth | | Undecimal superfourth, undetricesimal superfourth | ||
|556.522 | | 556.522 | ||
|[[11/8]], [[29/21]] | | [[11/8]], [[29/21]] | ||
|5.204, | | 5.204, −2.275 | ||
|- | |- | ||
|33 | | 33 | ||
|Narrow tritone, classic augmented fourth | | Narrow tritone, classic augmented fourth | ||
|573.913 | | 573.913 | ||
|[[7/5]], [[25/18]] | | [[7/5]], [[25/18]] | ||
| | | −8.600, 5.196 | ||
|- | |- | ||
|34 | | 34 | ||
|_____ | | _____ | ||
|591.304 | | 591.304 | ||
|[[31/22]] | | [[31/22]] | ||
| | | −2.413 | ||
|- | |- | ||
|35 | | 35 | ||
|High tritone, undevicesimal tritone | | High tritone, undevicesimal tritone | ||
|608.696 | | 608.696 | ||
|[[10/7]], [[27/19]] | | [[10/7]], [[27/19]] | ||
| | | −8.792, 0.344 | ||
|- | |- | ||
|36 | | 36 | ||
|_____ | | _____ | ||
|626.087 | | 626.087 | ||
|[[33/23]] | | [[33/23]] | ||
|1.088 | | 1.088 | ||
|- | |- | ||
|37 | | 37 | ||
| Undetricesimal tritone | | Undetricesimal tritone | ||
|643.478 | | 643.478 | ||
|[[29/20]] | | [[29/20]] | ||
|0.215 | | 0.215 | ||
|- | |- | ||
|38 | | 38 | ||
| Undevicesimal diminished fifth, undecimal diminished fifth | | Undevicesimal diminished fifth, undecimal diminished fifth | ||
|660.870 | | 660.870 | ||
|[[19/13]], [[22/15]] | | [[19/13]], [[22/15]] | ||
|3.884, | | 3.884, −2.180 | ||
|- | |- | ||
|39 | | 39 | ||
|Vicesimotertial grave fifth, _____ | | Vicesimotertial grave fifth, _____ | ||
|678.261 | | 678.261 | ||
|[[34/23]], [[37/25]] | | [[34/23]], [[37/25]] | ||
|1.580, | | 1.580, −0.456 | ||
|- | |- | ||
|40 | | 40 | ||
|Just perfect fifth | | Just perfect fifth | ||
|695.652 | | 695.652 | ||
|[[3/2]] | | [[3/2]] | ||
| | | −6.303 | ||
|- | |- | ||
|41 | | 41 | ||
|_____ | | _____ | ||
|713.043 | | 713.043 | ||
|[[80/53]] | | [[80/53]] | ||
|0.234 | | 0.234 | ||
|- | |- | ||
|42 | | 42 | ||
|Super-fifth, undetricesimal super-fifth | | Super-fifth, undetricesimal super-fifth | ||
|730.435 | | 730.435 | ||
|[[32/21]], [[29/19]] | | [[32/21]], [[29/19]] | ||
|1.216, | | 1.216, −1.630 | ||
|- | |- | ||
|43 | | 43 | ||
|Septendecimal subminor sixth | | Septendecimal subminor sixth | ||
|747.826 | | 747.826 | ||
|[[17/11]] | | [[17/11]] | ||
| | | −5.811 | ||
|- | |- | ||
|44 | | 44 | ||
|Subminor sixth | | Subminor sixth | ||
|765.217 | | 765.217 | ||
|[[14/9]] | | [[14/9]] | ||
|0.301 | | 0.301 | ||
|- | |- | ||
|45 | | 45 | ||
|Undecimal minor sixth | | Undecimal minor sixth | ||
|782.609 | | 782.609 | ||
|[[11/7]] | | [[11/7]] | ||
|0.117 | | 0.117 | ||
|- | |- | ||
|46 | | 46 | ||
| Septendecimal subminor sixth | | Septendecimal subminor sixth | ||
|800.000 | | 800.000 | ||
|[[27/17]] | | [[27/17]] | ||
| | | −0.910 | ||
|- | |- | ||
|47 | | 47 | ||
|Classic minor sixth | | Classic minor sixth | ||
|817.391 | | 817.391 | ||
|[[8/5]] | | [[8/5]] | ||
|3.705 | | 3.705 | ||
|- | |- | ||
|48 | | 48 | ||
|Septendecimal supraminor sixth | | Septendecimal supraminor sixth | ||
|834.783 | | 834.783 | ||
|[[34/21]] | | [[34/21]] | ||
|0.608 | | 0.608 | ||
|- | |- | ||
|49 | | 49 | ||
|Undecimal neutral sixth | | Undecimal neutral sixth | ||
|852.174 | | 852.174 | ||
|[[18/11]] | | [[18/11]] | ||
| | | −0.418 | ||
|- | |- | ||
|50 | | 50 | ||
|Vicesimotertial submajor sixth | | Vicesimotertial submajor sixth | ||
|869.565 | | 869.565 | ||
|[[38/23]] | | [[38/23]] | ||
|0.327 | | 0.327 | ||
|- | |- | ||
|51 | | 51 | ||
|Classic major sixth | | Classic major sixth | ||
|886.957 | | 886.957 | ||
|[[5/3]] | | [[5/3]] | ||
|2.598 | | 2.598 | ||
|- | |- | ||
|52 | | 52 | ||
|Pythagorean major sixth | | Pythagorean major sixth | ||
|904.348 | | 904.348 | ||
|[[27/16]] | | [[27/16]] | ||
| | | −1.517 | ||
|- | |- | ||
|53 | | 53 | ||
|Septendecimal major sixth, undetricesimal major sixth | | Septendecimal major sixth, undetricesimal major sixth | ||
|921.739 | | 921.739 | ||
|[[17/10]], [[29/17]] | | [[17/10]], [[29/17]] | ||
|3.097, | | 3.097, −2.883 | ||
|- | |- | ||
|54 | | 54 | ||
|Supermajor sixth, undetricesimal supermajor sixth | | Supermajor sixth, undetricesimal supermajor sixth | ||
|939.130 | | 939.130 | ||
|[[12/7]], [[50/29]] | | [[12/7]], [[50/29]] | ||
|6.001, | | 6.001, −3.920 | ||
|- | |- | ||
|55 | | 55 | ||
|Vicesimotertial supermajor sixth | | Vicesimotertial supermajor sixth | ||
|956.522 | | 956.522 | ||
|[[40/23]] | | [[40/23]] | ||
| | | −1.518 | ||
|- | |- | ||
|56 | | 56 | ||
|Harmonic seventh | | Harmonic seventh | ||
|973.913 | | 973.913 | ||
|[[7/4]] | | [[7/4]] | ||
|5.087 | | 5.087 | ||
|- | |- | ||
|57 | | 57 | ||
|Pythagorean minor seventh | | Pythagorean minor seventh | ||
|991.304 | | 991.304 | ||
|[[16/9]] | | [[16/9]] | ||
| | | −4.786 | ||
|- | |- | ||
|58 | | 58 | ||
|Quasi-meantone minor seventh | | Quasi-meantone minor seventh | ||
|1008.696 | | 1008.696 | ||
|[[34/19]] | | [[34/19]] | ||
|1.253 | | 1.253 | ||
|- | |- | ||
|59 | | 59 | ||
|Minor neutral undevicesimal seventh | | Minor neutral undevicesimal seventh | ||
|1026.087 | | 1026.087 | ||
|[[38/21]] | | [[38/21]] | ||
| | | −0.645 | ||
|- | |- | ||
|60 | | 60 | ||
|Vicesimotertial neutral seventh | | Vicesimotertial neutral seventh | ||
|1043.478 | | 1043.478 | ||
|[[42/23]] | | [[42/23]] | ||
|0.972 | | 0.972 | ||
|- | |- | ||
|61 | | 61 | ||
|Tridecimal neutral seventh | | Tridecimal neutral seventh | ||
|1060.870 | | 1060.870 | ||
|[[24/13]] | | [[24/13]] | ||
| | | −0.558 | ||
|- | |- | ||
|62 | | 62 | ||
|Septimal diatonic major seventh | | Septimal diatonic major seventh | ||
|1078.261 | | 1078.261 | ||
|[[28/15]] | | [[28/15]] | ||
| | | −2.296 | ||
|- | |- | ||
|63 | | 63 | ||
|Small septendecimal major seventh | | Small septendecimal major seventh | ||
|1095.652 | | 1095.652 | ||
|[[32/17]] | | [[32/17]] | ||
|0.608 | | 0.608 | ||
|- | |- | ||
|64 | | 64 | ||
|Small undevicesimal semitone | | Small undevicesimal semitone | ||
|1113.043 | | 1113.043 | ||
|[[20/19]] | | [[20/19]] | ||
|1.844 | | 1.844 | ||
|- | |- | ||
|65 | | 65 | ||
|_____ | | _____ | ||
|1130.435 | | 1130.435 | ||
|[[73/38]] | | [[73/38]] | ||
|0.158 | | 0.158 | ||
|- | |- | ||
|66 | | 66 | ||
| Septendecimal supermajor seventh | | Septendecimal supermajor seventh | ||
|1147.826 | | 1147.826 | ||
|[[33/17]] | | [[33/17]] | ||
| | | −0.491 | ||
|- | |- | ||
|67 | | 67 | ||
|_____ | | _____ | ||
|1165.217 | | 1165.217 | ||
|[[49/25]] | | [[49/25]] | ||
| | | −0.193 | ||
|- | |- | ||
|68 | | 68 | ||
|_____ | | _____ | ||
|1182.609 | | 1182.609 | ||
|[[99/50]] | | [[99/50]] | ||
|0.008 | | 0.008 | ||
|- | |- | ||
|69 | | 69 | ||
|Octave, 8 | | Octave, 8 | ||
|1200.000 | | 1200.000 | ||
|[[2/1]] | | [[2/1]] | ||
|0.000 | | 0.000 | ||
|} | |} | ||
<nowiki>* | <nowiki />* Some simpler ratios listed | ||
== Notation == | == Notation == | ||
=== Ups and downs notation === | |||
Using [[Helmholtz–Ellis]] accidentals, 69edo can also be notated using [[ups and downs notation]] along with Stein–Zimmerman [[24edo#Notation|quarter-tone]] accidentals: | |||
{{Sharpness-sharp4}} | |||
Here, a sharp raises by four steps, and a flat lowers by four steps, so arrows can be used to fill in the gap. | |||
===Sagittal notation=== | === Sagittal notation === | ||
This notation uses the same sagittal sequence as EDOs [[62edo#Sagittal notation|62]] and [[76edo#Sagittal notation|76]]. | This notation uses the same sagittal sequence as EDOs [[62edo#Sagittal notation|62]] and [[76edo#Sagittal notation|76]]. | ||
==== Evo flavor ==== | |||
<imagemap> | <imagemap> | ||
File:69-EDO_Evo_Sagittal.svg | File:69-EDO_Evo_Sagittal.svg | ||
Line 464: | Line 467: | ||
</imagemap> | </imagemap> | ||
====Revo flavor==== | ==== Revo flavor ==== | ||
<imagemap> | <imagemap> | ||
File:69-EDO_Revo_Sagittal.svg | File:69-EDO_Revo_Sagittal.svg | ||
Line 476: | Line 478: | ||
</imagemap> | </imagemap> | ||
====Evo-SZ flavor==== | ==== Evo-SZ flavor ==== | ||
<imagemap> | <imagemap> | ||
File:69-EDO_Evo-SZ_Sagittal.svg | File:69-EDO_Evo-SZ_Sagittal.svg | ||
Line 492: | Line 493: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list|Comma List]] | ! rowspan="2" | [[Comma list|Comma List]] |