16edo: Difference between revisions

Removed "melodic" and "harmonic".
Line 11: Line 11:


== Theory ==
== Theory ==
16edo is not especially good at representing most musical intervals involving prime [[2/1|2]], but it has a [[7/4]] which is only six cents sharp, and a [[5/4]] which is only eleven cents flat. Most low odd harmonics are tuned very flat, but some such as [[21/16|21]]:[[11/8|22]]:[[23/16|23]]:[[3/2|24]]:[[25/16|25]]:[[13/8|26]] are well in tune with each other. Having a [[Stretched_and_compressed_tuning|flat tendency]], 16et is best tuned with the octave approximately 5{{c}} sharp, slightly improving the accuracy of wide-voiced JI chords and [[rooted]] harmonics.
In general, 16edo tends to better approximate the differences between odd [[harmonic]]s than odd harmonics themselves, though there are exceptions: it has a [[7/4|7/1]] which is only six cents sharp, and a [[5/4|5/1]] which is only eleven cents flat. Most low harmonics are tuned very flat, but some such as [[21/16|21]]:[[11/8|22]]:[[23/16|23]]:[[3/2|24]]:[[25/16|25]]:[[13/8|26]] are well in tune with each other. Having a [[Stretched_and_compressed_tuning|flat tendency]], 16et is best tuned with the octave approximately 5{{cc}} sharp, slightly improving the accuracy of wide-voiced JI chords and [[rooted]] harmonics.


Four steps of 16edo gives the 300{{c}} minor third interval shared by [[12edo]] (and other multiples of [[4edo]]), and thus the familiar [[diminished seventh chord]] may be built on any scale step with 4 unique tetrads up to [[octave equivalence]].
Four steps of 16edo gives the 300{{cc}} minor third interval shared by [[12edo]] (and other multiples of [[4edo]]), and thus the familiar [[diminished seventh chord]] may be built on any scale step with 4 unique tetrads up to [[octave equivalence]].


=== Odd harmonics ===
=== Odd harmonics ===