|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | '''''101-EDO''''' divides the [[Octave|octave]] into 101 equal parts of 11.881 [[cent|cent]]s each. It can be used to tune the [[Schismatic_family|grackle temperament]]. It is the 26th [[prime_numbers|prime]] edo. The 101cd val provides an excellent tuning for [[Magic_family#Witchcraft|witchcraft temperament]], falling between the 13 and 15 limit least squares tuning. |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2016-12-29 10:21:49 UTC</tt>.<br>
| |
| : The original revision id was <tt>602892676</tt>.<br>
| |
| : The revision comment was: <tt>tel-links removed</tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**//101-EDO//** divides the [[octave]] into 101 equal parts of 11.881 [[cent]]s each. It can be used to tune the [[Schismatic family|grackle temperament]]. It is the 26th [[prime numbers|prime]] edo. The 101cd val provides an excellent tuning for [[Magic family#Witchcraft|witchcraft temperament]], falling between the 13 and 15 limit least squares tuning.
| |
|
| |
|
| [[5-limit]] commas: 32805/32768, <5 13 -11| | | [[5-limit|5-limit]] commas: 32805/32768, <5 13 -11| |
|
| |
|
| [[7-limit]] commas: 126/125, 32805/32768, 2430/2401 | | [[7-limit|7-limit]] commas: 126/125, 32805/32768, 2430/2401 |
|
| |
|
| ==__Some important MOS scales:__== | | ==<u>Some important MOS scales:</u>== |
|
| |
|
| **25 13 25 25 13:** //3L2s MOS// (Pentatonic)
| | '''25 13 25 25 13:''' ''3L2s MOS'' (Pentatonic) |
| || 25 || 297.03 ||
| |
| || 38 || 451.485 ||
| |
| || 63 || 748.515 ||
| |
| || 88 || 1045.545 ||
| |
| **17 17 8 17 17 17 8:** //5L2s MOS// (Diatonic Pythagorean)
| |
| || **17** || **201.98** ||
| |
| || 34 || 403.96 ||
| |
| || **42** || **499.01** ||
| |
| || **59** || **700.99** ||
| |
| || **76** || **902.97** ||
| |
| || 93 || 1104.95 ||
| |
| **13 13 13 13 13 13 13 10:** //7L1s MOS// (Grumpy Octatonic)
| |
| || 13 || 154.455 ||
| |
| || 26 || 308.911 ||
| |
| || 39 || 463.366 ||
| |
| || 52 || 617.822 ||
| |
| || 65 || 772.277 ||
| |
| || 78 || 926.733 ||
| |
| || 91 || 1081.188 ||
| |
| **13 13 13 5 13 13 13 13 5:** //7L2s MOS// (Superdiatonic 1/13-tone 13;5 relation)
| |
| || **13/101** || **154.455** ||
| |
| || **26/101** || **308.911** ||
| |
| || 39/101 || 463.366 ||
| |
| || **44/101** || **522.772** ||
| |
| || **57/101** || **677.228** ||
| |
| || **70/101** || **831.683** ||
| |
| || **83/101** || **986.139** ||
| |
| || 96/101 || 1045.545 ||
| |
| **10 10 7 10 10 10 7 10 10 10 7:** //8L3s MOS// (Improper Sensi-11)
| |
| || **10** || **118.812** ||
| |
| || 20 || 237.624 ||
| |
| || **27** || **320.792** ||
| |
| || **37** || **439.604** ||
| |
| || **47** || **558.416** ||
| |
| || 57 || 677.228 ||
| |
| || **64** || **760.396** ||
| |
| || **74** || **879.218** ||
| |
| || **84** || **998.03** ||
| |
| || 94 || 1116.842 ||
| |
| **7 7 7 8 7 7 7 7 8 7 7 7 7 8:** //3L11s MOS// (Anti-Ketradektriatoh)
| |
| || **7** || **83.168** ||
| |
| || **14** || **166.337** ||
| |
| || 22 || 261.386 ||
| |
| || **29** || **344.5545** ||
| |
| || **36** || **427.723** ||
| |
| || **43** || **510.891** ||
| |
| || **50** || **594.0595** ||
| |
| || 58 || 689.119 ||
| |
| || **65** || **772.287** ||
| |
| || **72** || **855.4455** ||
| |
| || **79** || **938.614** ||
| |
| || **86** || **1021.782** ||
| |
| || 93 || 1104.95 ||
| |
|
| |
|
| =Links= | | {| class="wikitable" |
| [[http://tech.groups.yahoo.com/group/tuning-math/message/11157|The Ellis duodene in 101-equal]]</pre></div>
| | |- |
| <h4>Original HTML content:</h4>
| | | | 25 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>101edo</title></head><body><strong><em>101-EDO</em></strong> divides the <a class="wiki_link" href="/octave">octave</a> into 101 equal parts of 11.881 <a class="wiki_link" href="/cent">cent</a>s each. It can be used to tune the <a class="wiki_link" href="/Schismatic%20family">grackle temperament</a>. It is the 26th <a class="wiki_link" href="/prime%20numbers">prime</a> edo. The 101cd val provides an excellent tuning for <a class="wiki_link" href="/Magic%20family#Witchcraft">witchcraft temperament</a>, falling between the 13 and 15 limit least squares tuning.<br />
| | | | 297.03 |
| <br />
| | |- |
| <a class="wiki_link" href="/5-limit">5-limit</a> commas: 32805/32768, &lt;5 13 -11|<br />
| | | | 38 |
| <br />
| | | | 451.485 |
| <a class="wiki_link" href="/7-limit">7-limit</a> commas: 126/125, 32805/32768, 2430/2401<br />
| | |- |
| <br />
| | | | 63 |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Some important MOS scales:"></a><!-- ws:end:WikiTextHeadingRule:0 --><u>Some important MOS scales:</u></h2>
| | | | 748.515 |
| <br />
| | |- |
| <strong>25 13 25 25 13:</strong> <em>3L2s MOS</em> (Pentatonic)<br />
| | | | 88 |
| | | | 1045.545 |
| | |} |
| | '''17 17 8 17 17 17 8:''' ''5L2s MOS'' (Diatonic Pythagorean) |
|
| |
|
| | {| class="wikitable" |
| | |- |
| | | | '''17''' |
| | | | '''201.98''' |
| | |- |
| | | | 34 |
| | | | 403.96 |
| | |- |
| | | | '''42''' |
| | | | '''499.01''' |
| | |- |
| | | | '''59''' |
| | | | '''700.99''' |
| | |- |
| | | | '''76''' |
| | | | '''902.97''' |
| | |- |
| | | | 93 |
| | | | 1104.95 |
| | |} |
| | '''13 13 13 13 13 13 13 10:''' ''7L1s MOS'' (Grumpy Octatonic) |
|
| |
|
| <table class="wiki_table">
| | {| class="wikitable" |
| <tr>
| | |- |
| <td>25<br />
| | | | 13 |
| </td>
| | | | 154.455 |
| <td>297.03<br />
| | |- |
| </td>
| | | | 26 |
| </tr>
| | | | 308.911 |
| <tr>
| | |- |
| <td>38<br />
| | | | 39 |
| </td>
| | | | 463.366 |
| <td>451.485<br />
| | |- |
| </td>
| | | | 52 |
| </tr>
| | | | 617.822 |
| <tr>
| | |- |
| <td>63<br />
| | | | 65 |
| </td>
| | | | 772.277 |
| <td>748.515<br />
| | |- |
| </td>
| | | | 78 |
| </tr>
| | | | 926.733 |
| <tr>
| | |- |
| <td>88<br />
| | | | 91 |
| </td>
| | | | 1081.188 |
| <td>1045.545<br />
| | |} |
| </td>
| | '''13 13 13 5 13 13 13 13 5:''' ''7L2s MOS'' (Superdiatonic 1/13-tone 13;5 relation) |
| </tr>
| |
| </table>
| |
|
| |
|
| <strong>17 17 8 17 17 17 8:</strong> <em>5L2s MOS</em> (Diatonic Pythagorean)<br />
| | {| class="wikitable" |
| | |- |
| | | | '''13/101''' |
| | | | '''154.455''' |
| | |- |
| | | | '''26/101''' |
| | | | '''308.911''' |
| | |- |
| | | | 39/101 |
| | | | 463.366 |
| | |- |
| | | | '''44/101''' |
| | | | '''522.772''' |
| | |- |
| | | | '''57/101''' |
| | | | '''677.228''' |
| | |- |
| | | | '''70/101''' |
| | | | '''831.683''' |
| | |- |
| | | | '''83/101''' |
| | | | '''986.139''' |
| | |- |
| | | | 96/101 |
| | | | 1045.545 |
| | |} |
| | '''10 10 7 10 10 10 7 10 10 10 7:''' ''8L3s MOS'' (Improper Sensi-11) |
|
| |
|
| | {| class="wikitable" |
| | |- |
| | | | '''10''' |
| | | | '''118.812''' |
| | |- |
| | | | 20 |
| | | | 237.624 |
| | |- |
| | | | '''27''' |
| | | | '''320.792''' |
| | |- |
| | | | '''37''' |
| | | | '''439.604''' |
| | |- |
| | | | '''47''' |
| | | | '''558.416''' |
| | |- |
| | | | 57 |
| | | | 677.228 |
| | |- |
| | | | '''64''' |
| | | | '''760.396''' |
| | |- |
| | | | '''74''' |
| | | | '''879.218''' |
| | |- |
| | | | '''84''' |
| | | | '''998.03''' |
| | |- |
| | | | 94 |
| | | | 1116.842 |
| | |} |
| | '''7 7 7 8 7 7 7 7 8 7 7 7 7 8:''' ''3L11s MOS'' (Anti-Ketradektriatoh) |
|
| |
|
| <table class="wiki_table">
| | {| class="wikitable" |
| <tr>
| | |- |
| <td><strong>17</strong><br />
| | | | '''7''' |
| </td>
| | | | '''83.168''' |
| <td><strong>201.98</strong><br />
| | |- |
| </td>
| | | | '''14''' |
| </tr>
| | | | '''166.337''' |
| <tr>
| | |- |
| <td>34<br />
| | | | 22 |
| </td>
| | | | 261.386 |
| <td>403.96<br />
| | |- |
| </td>
| | | | '''29''' |
| </tr>
| | | | '''344.5545''' |
| <tr>
| | |- |
| <td><strong>42</strong><br />
| | | | '''36''' |
| </td>
| | | | '''427.723''' |
| <td><strong>499.01</strong><br />
| | |- |
| </td>
| | | | '''43''' |
| </tr>
| | | | '''510.891''' |
| <tr>
| | |- |
| <td><strong>59</strong><br />
| | | | '''50''' |
| </td>
| | | | '''594.0595''' |
| <td><strong>700.99</strong><br />
| | |- |
| </td>
| | | | 58 |
| </tr>
| | | | 689.119 |
| <tr>
| | |- |
| <td><strong>76</strong><br />
| | | | '''65''' |
| </td>
| | | | '''772.287''' |
| <td><strong>902.97</strong><br />
| | |- |
| </td>
| | | | '''72''' |
| </tr>
| | | | '''855.4455''' |
| <tr>
| | |- |
| <td>93<br />
| | | | '''79''' |
| </td>
| | | | '''938.614''' |
| <td>1104.95<br />
| | |- |
| </td>
| | | | '''86''' |
| </tr>
| | | | '''1021.782''' |
| </table>
| | |- |
| | | | 93 |
| | | | 1104.95 |
| | |} |
|
| |
|
| <strong>13 13 13 13 13 13 13 10:</strong> <em>7L1s MOS</em> (Grumpy Octatonic)<br />
| | =Links= |
| | | [http://tech.groups.yahoo.com/group/tuning-math/message/11157 The Ellis duodene in 101-equal] [[Category:101-tone]] |
| | | [[Category:101edo]] |
| <table class="wiki_table">
| | [[Category:armodue]] |
| <tr>
| | [[Category:edo]] |
| <td>13<br />
| | [[Category:equal]] |
| </td>
| | [[Category:grackle]] |
| <td>154.455<br />
| | [[Category:prime_edo]] |
| </td>
| | [[Category:pythagorean]] |
| </tr>
| | [[Category:scales]] |
| <tr>
| | [[Category:todo:improve_leayout]] |
| <td>26<br />
| | [[Category:todo:unify_precision]] |
| </td>
| |
| <td>308.911<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>463.366<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52<br />
| |
| </td>
| |
| <td>617.822<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>65<br />
| |
| </td>
| |
| <td>772.277<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>78<br />
| |
| </td>
| |
| <td>926.733<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>91<br />
| |
| </td>
| |
| <td>1081.188<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| <strong>13 13 13 5 13 13 13 13 5:</strong> <em>7L2s MOS</em> (Superdiatonic 1/13-tone 13;5 relation)<br />
| |
| | |
| | |
| <table class="wiki_table">
| |
| <tr>
| |
| <td><strong>13/101</strong><br />
| |
| </td>
| |
| <td><strong>154.455</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>26/101</strong><br />
| |
| </td>
| |
| <td><strong>308.911</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39/101<br />
| |
| </td>
| |
| <td>463.366<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>44/101</strong><br />
| |
| </td>
| |
| <td><strong>522.772</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>57/101</strong><br />
| |
| </td>
| |
| <td><strong>677.228</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>70/101</strong><br />
| |
| </td>
| |
| <td><strong>831.683</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>83/101</strong><br />
| |
| </td>
| |
| <td><strong>986.139</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>96/101<br />
| |
| </td>
| |
| <td>1045.545<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| <strong>10 10 7 10 10 10 7 10 10 10 7:</strong> <em>8L3s MOS</em> (Improper Sensi-11)<br />
| |
| | |
| | |
| <table class="wiki_table">
| |
| <tr>
| |
| <td><strong>10</strong><br />
| |
| </td>
| |
| <td><strong>118.812</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>237.624<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>27</strong><br />
| |
| </td>
| |
| <td><strong>320.792</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>37</strong><br />
| |
| </td>
| |
| <td><strong>439.604</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>47</strong><br />
| |
| </td>
| |
| <td><strong>558.416</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>57<br />
| |
| </td>
| |
| <td>677.228<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>64</strong><br />
| |
| </td>
| |
| <td><strong>760.396</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>74</strong><br />
| |
| </td>
| |
| <td><strong>879.218</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>84</strong><br />
| |
| </td>
| |
| <td><strong>998.03</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>94<br />
| |
| </td>
| |
| <td>1116.842<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| <strong>7 7 7 8 7 7 7 7 8 7 7 7 7 8:</strong> <em>3L11s MOS</em> (Anti-Ketradektriatoh)<br />
| |
| | |
| | |
| <table class="wiki_table">
| |
| <tr>
| |
| <td><strong>7</strong><br />
| |
| </td>
| |
| <td><strong>83.168</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>14</strong><br />
| |
| </td>
| |
| <td><strong>166.337</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>261.386<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>29</strong><br />
| |
| </td>
| |
| <td><strong>344.5545</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>36</strong><br />
| |
| </td>
| |
| <td><strong>427.723</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>43</strong><br />
| |
| </td>
| |
| <td><strong>510.891</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>50</strong><br />
| |
| </td>
| |
| <td><strong>594.0595</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>58<br />
| |
| </td>
| |
| <td>689.119<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>65</strong><br />
| |
| </td>
| |
| <td><strong>772.287</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>72</strong><br />
| |
| </td>
| |
| <td><strong>855.4455</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>79</strong><br />
| |
| </td>
| |
| <td><strong>938.614</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>86</strong><br />
| |
| </td>
| |
| <td><strong>1021.782</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>93<br />
| |
| </td>
| |
| <td>1104.95<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Links"></a><!-- ws:end:WikiTextHeadingRule:2 -->Links</h1>
| |
| <a class="wiki_link_ext" href="http://tech.groups.yahoo.com/group/tuning-math/message/11157" rel="nofollow">The Ellis duodene in 101-equal</a></body></html></pre></div>
| |