212edo: Difference between revisions

ArrowHead294 (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
mNo edit summary
Line 3: Line 3:


== Theory ==
== Theory ==
212edo is [[consistency|distinctly consistent]] in the [[15-odd-limit]] with [[harmonic]]s of 3 through 13 all tuned flat. 212 = 4 × 53, and it shares the [[3/1|3rd]], [[5/1|5th]], and [[13/1|13th]] [[harmonic]]s with [[53edo]], but the mapping differs for [[7/1|7]] and [[11/1|11]].  
212edo is [[consistency|distinctly consistent]] in the [[15-odd-limit]] with [[harmonic]]s of 3 through 13 all tuned flat. It shares the [[3/1|3rd]], [[5/1|5th]], and [[13/1|13th]] [[harmonic]]s with [[53edo]], but the mapping differs for [[7/1|7]] and [[11/1|11]].  


The equal temperament [[tempering out|tempers out]] the same commas ([[15625/15552]], [[32805/32768]], [[amity comma|1600000/1594323]], etc.) as 53edo in the [[5-limit]]. In the [[7-limit]], it tempers out 2401/2400 ([[breedsma]]), 390625/388962 ([[dimcomp comma]]), and 4802000/4782969 ([[canousma]]). In the [[11-limit]], [[385/384]], [[1375/1372]], [[6250/6237]], [[9801/9800]] and [[14641/14580]]; in the [[13-limit]], [[325/324]], [[625/624]], [[676/675]], [[1001/1000]], [[1716/1715]], [[2080/2079]] and [[10648/10647]].  
It [[tempers out]] the same commas ([[15625/15552]], [[32805/32768]], [[amity comma|1600000/1594323]], etc.) as 53edo in the [[5-limit]]. In the [[7-limit]], it tempers out 2401/2400 ([[breedsma]]), 390625/388962 ([[dimcomp comma]]), and 4802000/4782969 ([[canousma]]). In the [[11-limit]], [[385/384]], [[1375/1372]], [[6250/6237]], [[9801/9800]], and [[14641/14580]]; in the [[13-limit]], [[325/324]], [[625/624]], [[676/675]], [[1001/1000]], [[1716/1715]], [[2080/2079]], and [[10648/10647]].  


It is the [[optimal patent val]] for 7- and 13-limit [[quadritikleismic]] temperament, the 7-limit [[Kleismic rank three family #Rank-3 kleismic|rank-3 kleismic]] temperament, and the 13-limit rank-3 [[agni]] temperament. It enables [[marveltwin chords]], [[keenanismic chords]], [[sinbadmic chords]], and [[lambeth chords]] in the 13-odd-limit in addition to [[island chords]] in the 15-odd-limit.  
It is the [[optimal patent val]] for 7- and 13-limit [[quadritikleismic]] temperament, the 7-limit [[Kleismic rank three family #Rank-3 kleismic|rank-3 kleismic]] temperament, and the 13-limit rank-3 [[agni]] temperament. It enables [[marveltwin chords]], [[keenanismic chords]], [[sinbadmic chords]], and [[lambeth chords]] in the 13-odd-limit in addition to [[island chords]] in the 15-odd-limit.  
Line 15: Line 15:


=== Subsets and supersets ===
=== Subsets and supersets ===
Since 212 factors into 2<sup>2</sup> × 53, 212edo has subset edos {{EDOs| 2, 4, 53, and 106 }}. As such, it can be used to tune the period-53 [[cartography]] temperament and the period-106 [[boiler]] temperment.  
Since 212 factors into {{factorisation|212}}, 212edo has subset edos {{EDOs| 2, 4, 53, and 106 }}. As such, it can be used to tune the period-53 [[cartography]] temperament and the period-106 [[boiler]] temperment.  


A step of 212edo is exactly 50 [[türk sent]]s.
A step of 212edo is exactly 50 [[türk sent]]s.
Line 146: Line 146:
| [[Schismerc]] / [[cartography]]
| [[Schismerc]] / [[cartography]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


== Music ==
== Music ==