Height: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 363456640 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 363458346 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-09-10 12:14:33 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-09-10 12:16:48 UTC</tt>.<br>
: The original revision id was <tt>363456640</tt>.<br>
: The original revision id was <tt>363458346</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 83: Line 83:
[[math]]
[[math]]


Height functions can also be put on the points of [[http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html|projective varieties]]. Since [[abstract regular temperaments]] can be identified with rational points on [[http://en.wikipedia.org/wiki/Grassmannian|Grassmann varieties]], complexity measures of regular temperaments are also height functions.</pre></div>
Height functions can also be put on the points of [[http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html|projective varieties]]. Since [[Abstract regular temperament|abstract regular temperaments]] can be identified with rational points on [[http://en.wikipedia.org/wiki/Grassmannian|Grassmann varieties]], complexity measures of regular temperaments are also height functions.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Height&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:19:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:19 --&gt;Definition:&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Height&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:19:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:19 --&gt;Definition:&lt;/h1&gt;
Line 249: Line 249:
  --&gt;&lt;script type="math/tex"&gt;n d = 2^{T1 \left( {q} \right)}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:18 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;n d = 2^{T1 \left( {q} \right)}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:18 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Height functions can also be put on the points of &lt;a class="wiki_link_ext" href="http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html" rel="nofollow"&gt;projective varieties&lt;/a&gt;. Since &lt;a class="wiki_link" href="/abstract%20regular%20temperaments"&gt;abstract regular temperaments&lt;/a&gt; can be identified with rational points on &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Grassmannian" rel="nofollow"&gt;Grassmann varieties&lt;/a&gt;, complexity measures of regular temperaments are also height functions.&lt;/body&gt;&lt;/html&gt;</pre></div>
Height functions can also be put on the points of &lt;a class="wiki_link_ext" href="http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html" rel="nofollow"&gt;projective varieties&lt;/a&gt;. Since &lt;a class="wiki_link" href="/Abstract%20regular%20temperament"&gt;abstract regular temperaments&lt;/a&gt; can be identified with rational points on &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Grassmannian" rel="nofollow"&gt;Grassmann varieties&lt;/a&gt;, complexity measures of regular temperaments are also height functions.&lt;/body&gt;&lt;/html&gt;</pre></div>