Height: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 363463254 - Original comment: **
Wikispaces>Sarzadoce
**Imported revision 363887748 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-09-10 12:24:12 UTC</tt>.<br>
: This revision was by author [[User:Sarzadoce|Sarzadoce]] and made on <tt>2012-09-11 16:46:57 UTC</tt>.<br>
: The original revision id was <tt>363463254</tt>.<br>
: The original revision id was <tt>363887748</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 60: Line 60:
[[math]] || [[math]]
[[math]] || [[math]]
T1 \left( {q} \right) + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)
T1 \left( {q} \right) + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)
[[math]] ||
|| Harmonic Height || Improper || [[math]]
\dfrac {n d} {n + d}
[[math]] || [[math]]
\dfrac {\sqrt{q}} {\left( {q + 1} \right)} \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right)} {2} \right)
[[math]] || [[math]]
T1 \left( {q} \right) - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)
[[math]] ||
[[math]] ||
|| [[Kees Height]] || Improper || [[math]]
|| [[Kees Height]] || Improper || [[math]]
\max \left( {2^{-v_2 \left( {n} \right)} n ,  
\max \left( {2^{-v_2 \left( {n} \right)} n ,
2^{-v_2 \left( {d} \right)} d} \right)
2^{-v_2 \left( {d} \right)} d} \right)
[[math]] || [[math]]
[[math]] || [[math]]
Line 69: Line 76:
T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |
T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |
[[math]] ||
[[math]] ||
||  ||  ||  ||  ||  ||
Where T1(q) is the [[xenharmonic/Generalized Tenney Norms and Tp Interval Space#The%20Tenney%20Norm%20(T1%20norm)|tenney norm]] of q in monzo form, and vp(x) is the [[http://en.wikipedia.org/wiki/P-adic_order|p-adic valuation]] of x.
Where T1(q) is the [[xenharmonic/Generalized Tenney Norms and Tp Interval Space#The%20Tenney%20Norm%20(T1%20norm)|tenney norm]] of q in monzo form, and vp(x) is the [[http://en.wikipedia.org/wiki/P-adic_order|p-adic valuation]] of x.


Line 85: Line 91:
Height functions can also be put on the points of [[http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html|projective varieties]]. Since [[Abstract regular temperament|abstract regular temperaments]] can be identified with rational points on [[http://en.wikipedia.org/wiki/Grassmannian|Grassmann varieties]], complexity measures of regular temperaments are also height functions.</pre></div>
Height functions can also be put on the points of [[http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html|projective varieties]]. Since [[Abstract regular temperament|abstract regular temperaments]] can be identified with rational points on [[http://en.wikipedia.org/wiki/Grassmannian|Grassmann varieties]], complexity measures of regular temperaments are also height functions.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Height&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:19:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:19 --&gt;Definition:&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Height&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;Definition:&lt;/h1&gt;
  A &lt;strong&gt;height&lt;/strong&gt; is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement. For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.&lt;br /&gt;
  A &lt;strong&gt;height&lt;/strong&gt; is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement. For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 115: Line 121:
&lt;br /&gt;
&lt;br /&gt;
By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example.&lt;br /&gt;
By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example.&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:21:&amp;lt;h6&amp;gt; --&gt;&lt;h6 id="toc1"&gt;&lt;!-- ws:end:WikiTextHeadingRule:21 --&gt; &lt;/h6&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h6&amp;gt; --&gt;&lt;h6 id="toc1"&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt; &lt;/h6&gt;
  &lt;!-- ws:start:WikiTextHeadingRule:23:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Examples of Height Functions:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:23 --&gt;Examples of Height Functions:&lt;/h1&gt;
  &lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Examples of Height Functions:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;Examples of Height Functions:&lt;/h1&gt;
   
   


Line 197: Line 203:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Kees%20Height"&gt;Kees Height&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;Harmonic Height&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Improper&lt;br /&gt;
         &lt;td&gt;Improper&lt;br /&gt;
Line 203: Line 209:
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:13:
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:13:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
\max \left( {2^{-v_2 \left( {n} \right)} n , &amp;lt;br /&amp;gt;
\dfrac {n d} {n + d}&amp;lt;br/&amp;gt;[[math]]
2^{-v_2 \left( {d} \right)} d} \right)&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;\dfrac {n d} {n + d}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:13 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;\max \left( {2^{-v_2 \left( {n} \right)} n ,
2^{-v_2 \left( {d} \right)} d} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:13 --&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:14:
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:14:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
\exp \left( {\ln \left( {2} \right) \dfrac {T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |} {2}}} \right)&amp;lt;br/&amp;gt;[[math]]
\dfrac {\sqrt{q}} {\left( {q + 1} \right)} \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right)} {2} \right)&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;\exp \left( {\ln \left( {2} \right) \dfrac {T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |} {2}}} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:14 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;\dfrac {\sqrt{q}} {\left( {q + 1} \right)} \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right)} {2} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:14 --&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:15:
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:15:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |&amp;lt;br/&amp;gt;[[math]]
T1 \left( {q} \right) - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:15 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;T1 \left( {q} \right) - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:15 --&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Kees%20Height"&gt;Kees Height&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;Improper&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:16:
[[math]]&amp;lt;br/&amp;gt;
\max \left( {2^{-v_2 \left( {n} \right)} n ,&amp;lt;br /&amp;gt;
2^{-v_2 \left( {d} \right)} d} \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\max \left( {2^{-v_2 \left( {n} \right)} n ,
2^{-v_2 \left( {d} \right)} d} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:16 --&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:17:
[[math]]&amp;lt;br/&amp;gt;
\exp \left( {\ln \left( {2} \right) \dfrac {T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |} {2}}} \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\exp \left( {\ln \left( {2} \right) \dfrac {T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |} {2}}} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:17 --&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:18:
[[math]]&amp;lt;br/&amp;gt;
T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:18 --&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 236: Line 251:
&lt;br /&gt;
&lt;br /&gt;
Some useful identities:&lt;br /&gt;
Some useful identities:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:16:
&lt;!-- ws:start:WikiTextMathRule:19:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)&amp;lt;br/&amp;gt;[[math]]
n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:16 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:19 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:17:
&lt;!-- ws:start:WikiTextMathRule:20:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)&amp;lt;br/&amp;gt;[[math]]
d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:17 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:20 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:18:
&lt;!-- ws:start:WikiTextMathRule:21:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
n d = 2^{T1 \left( {q} \right)}&amp;lt;br/&amp;gt;[[math]]
n d = 2^{T1 \left( {q} \right)}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;n d = 2^{T1 \left( {q} \right)}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:18 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;n d = 2^{T1 \left( {q} \right)}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:21 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Height functions can also be put on the points of &lt;a class="wiki_link_ext" href="http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html" rel="nofollow"&gt;projective varieties&lt;/a&gt;. Since &lt;a class="wiki_link" href="/Abstract%20regular%20temperament"&gt;abstract regular temperaments&lt;/a&gt; can be identified with rational points on &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Grassmannian" rel="nofollow"&gt;Grassmann varieties&lt;/a&gt;, complexity measures of regular temperaments are also height functions.&lt;/body&gt;&lt;/html&gt;</pre></div>
Height functions can also be put on the points of &lt;a class="wiki_link_ext" href="http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html" rel="nofollow"&gt;projective varieties&lt;/a&gt;. Since &lt;a class="wiki_link" href="/Abstract%20regular%20temperament"&gt;abstract regular temperaments&lt;/a&gt; can be identified with rational points on &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Grassmannian" rel="nofollow"&gt;Grassmann varieties&lt;/a&gt;, complexity measures of regular temperaments are also height functions.&lt;/body&gt;&lt;/html&gt;</pre></div>