Ennealimmal–enneadecal equivalence continuum: Difference between revisions

ArrowHead294 (talk | contribs)
m ArrowHead294 moved page Ennealimmal-enneadecal equivalence continuum to Ennealimmal–enneadecal equivalence continuum: The dash in titles like these should be an en dash, not a hyphen-minus, since "ennealimmal" does not modify "enneadecal"
ArrowHead294 (talk | contribs)
mNo edit summary
Line 1: Line 1:
The '''ennealimmal-enneadecal equivalence continuum''' is a continuum of 5-limit temperaments which equate a number of [[ennealimma|ennealimmas ({{monzo|1 -27 18}})]] with [[Enneadeca|enneadeca comma ({{monzo|-14 -19 19}})]]. This continuum is theoretically interesting in that these are all 5-limit microtemperaments.
The '''ennealimmal–enneadecal equivalence continuum''' is a continuum of 5-limit temperaments which equate a number of [[ennealimma|ennealimmas ({{monzo|1 -27 18}})]] with [[Enneadeca|enneadeca comma ({{monzo|-14 -19 19}})]]. This continuum is theoretically interesting in that these are all 5-limit microtemperaments.


All temperaments in the continuum satisfy (2・3<sup>-27</sup>・5<sup>18</sup>)<sup>''n''</sup> ~ (2<sup>-14</sup>・3<sup>-19</sup>・5<sup>19</sup>). Varying ''n'' results in different temperaments listed in the table below. It converges to [[ennealimmal]] as ''n'' approaches infinity. If we allow non-integer and infinite ''n'', the continuum describes the set of all [[5-limit]] temperaments supported by [[171edo]] (due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them). The just value of ''n'' is approximately 3.2669545024..., and temperaments having ''n'' near this value tend to be the most accurate ones.  
All temperaments in the continuum satisfy {{nowrap|(2・3<sup>&minus;27</sup>・5<sup>18</sup>)<sup>''n''</sup> ~ (2<sup>&minus;14</sup>・3<sup>&minus;19</sup>・5<sup>19</sup>)}}. Varying ''n'' results in different temperaments listed in the table below. It converges to [[ennealimmal]] as ''n'' approaches infinity. If we allow non-integer and infinite ''n'', the continuum describes the set of all [[5-limit]] temperaments supported by [[171edo]] (due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them). The just value of ''n'' is approximately 3.2669545024..., and temperaments having ''n'' near this value tend to be the most accurate ones.  


{| class="wikitable center-1 center-2"
{| class="wikitable center-1 center-2"
|+ Temperaments in the continuum
|+ style="font-size: 105%" | Temperaments in the continuum
|-
|-
! rowspan="2" | ''n''
! rowspan="2" | ''n''
Line 13: Line 13:
! Monzo
! Monzo
|-
|-
| -4
| &minus;4
| 171 &amp; 2429
| 171 &amp; 2429
|  
|  
| {{monzo|-10 -127 91}}
| {{monzo|-10 -127 91}}
|-
|-
| -3
| &minus;3
| 171 &amp; 1817
| 171 &amp; 1817
|  
|  
| {{monzo|-11 -100 73}}
| {{monzo|-11 -100 73}}
|-
|-
| -2
| &minus;2
| [[Ragismic microtemperaments #Semidimi|Semidimi]]
| [[Ragismic microtemperaments #Semidimi|Semidimi]]
|  
|  
| {{monzo|-12 -73 55}}
| {{monzo|-12 -73 55}}
|-
|-
| -1
| &minus;1
| [[Ragismic microtemperaments #Supermajor|Supermajor]]
| [[Ragismic microtemperaments #Supermajor|Supermajor]]
|  
|  
Line 75: Line 75:


Examples of temperaments with fractional values of ''n'':  
Examples of temperaments with fractional values of ''n'':  
* 171 &amp; 3193 (''n'' = -5/2 = -2.5)
* 171 &amp; 3193 ({{nowrap|''n'' {{=}} &minus;5/2 {{=}} &minus;2.5}})
* 171 &amp; 2140 (''n'' = -3/2 = -1.5)
* 171 &amp; 2140 ({{nowrap|''n'' {{=}} &minus;3/2 {{=}} &minus;1.5}})
* 171 &amp; 1087 (''n'' = -1/2 = -0.5)
* 171 &amp; 1087 ({{nowrap|''n'' {{=}} &minus;1/2 {{=}} &minus;0.5}})
* [[Landscape microtemperaments #Pnict|Pnict]] (''n'' = 1/3 = 0.{{overline|3}})
* [[Landscape microtemperaments #Pnict|Pnict]] ({{nowrap|''n'' {{=}} 1/3 {{=}} 0.{{overline|3}}}})
* [[Gammic family|Gammic]] (''n'' = 1/2 = 0.5)
* [[Gammic family|Gammic]] ({{nowrap|''n'' {{=}} 1/2 {{=}} 0.5}})
* [[Horwell temperaments #Mutt|Mutt]] (''n'' = 2/3 = 0.{{overline|6}})
* [[Horwell temperaments #Mutt|Mutt]] ({{nowrap|''n'' {{=}} 2/3 {{=}} 0.{{overline|6}}}})
* [[Landscape microtemperaments #Septichrome|Septichrome]] (''n'' = 4/3 = 1.{{overline|3}})
* [[Landscape microtemperaments #Septichrome|Septichrome]] ({{nowrap|''n'' {{=}} 4/3 {{=}} 1.{{overline|3}}}})
* [[Metric microtemperaments #Geb|Geb]] (''n'' = 3/2 = 1.5)
* [[Metric microtemperaments #Geb|Geb]] ({{nowrap|''n'' {{=}} 3/2 {{=}} 1.5}})
* 171 &amp; 1901 (''n'' = 5/2 = 2.5)
* 171 &amp; 1901 ({{nowrap|''n'' {{=}} 5/2 {{=}} 2.5}})
* 171 &amp; 4125 (''n'' = 10/3 = 3.{{overline|3}})
* 171 &amp; 4125 ({{nowrap|''n'' {{=}} 10/3 {{=}} 3.{{overline|3}}}})
* 171 &amp; 3125 (''n'' = 7/2 = 3.5)
* 171 &amp; 3125 ({{nowrap|''n'' {{=}} 7/2 {{=}} 3.5}})


[[Category:171edo]]
[[Category:171edo]]
[[Category:Equivalence continua]]
[[Category:Equivalence continua]]