54edo: Difference between revisions
m Add links |
|||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
54edo is suitable for usage as a [[dual-fifth tuning]] system, or alternatively, a no-fifth tuning system. Using the sharp fifth, it can be viewed as two [[ring number|rings]] of [[27edo]], which adds better approximations of the [[11/1|11th]] and [[15/1|15th harmonics]]. Using the flat fifth, it generates an ultrasoft diatonic scale. This scale is so soft, with L/s = 8/7, that it stops sounding like [[meantone]] or even [[flattone]], but just sounds like a [[circulating temperament]] of [[7edo]]. | 54edo is suitable for usage as a [[dual-fifth tuning]] system, or alternatively, a [[No-threes subgroup temperaments|no-fifth]] tuning system. Using the sharp fifth, it can be viewed as two [[ring number|rings]] of [[27edo]], which adds better approximations of the [[11/1|11th]] and [[15/1|15th harmonics]]. Using the flat fifth, it generates an ultrasoft [[diatonic scale]]. This scale is so [[soft]], with L/s = 8/7, that it stops sounding like [[meantone]] or even [[flattone]], but just sounds like a [[circulating temperament]] of [[7edo]]. | ||
The [[patent val]] of this edo takes the same fifth as 27edo, but the mapping for harmonic 5 is different. It tempers out [[2048/2025]] in the 5-limit, making it a [[diaschismic]] system. It is the highest edo in which the best mappings of the major 3rd ([[5/4]]) and harmonic 7th ([[7/4]]), 17\54 and 44\54, are exactly 600 cents apart, making them suitable for harmonies using tritone substitutions. In other words, this is the last edo tempering out [[50/49]]. This means it extends quite simply to the 7- and 11-limit using the [[pajarous]] mapping and to the 13-limit using the 54f val, falling neatly between the 7- and 13-limit [[Target tuning #Minimax tuning|minimax tunings]]. The 54cd val makes for an excellent tuning of 7-limit [[hexe]] temperament, while the 54bdf val does higher limit [[muggles]] about as well as it can be tuned. However, even these best temperament interpretations | The [[patent val]] of this edo takes the same fifth as [[27edo]], but the [[mapping]] for harmonic 5 is different. It tempers out [[2048/2025]] in the 5-limit, making it a [[diaschismic]] system. It is the highest edo in which the best mappings of the major 3rd ([[5/4]]) and harmonic 7th ([[7/4]]), 17\54 and 44\54, are exactly 600 cents apart, making them suitable for harmonies using tritone substitutions. In other words, this is the last edo tempering out [[50/49]]. This means it extends quite simply to the 7- and 11-limit using the [[pajarous]] mapping and to the 13-limit using the 54f val, falling neatly between the 7- and 13-limit [[Target tuning #Minimax tuning|minimax tunings]]. | ||
The 54cd val makes for an excellent tuning of 7-limit [[hexe]] temperament, while the 54bdf val does higher limit [[muggles]] about as well as it can be tuned. However, even these best temperament interpretations of 54edoare quite high in [[badness]] compared to its immediate neighbours [[53edo|53-]] and [[55edo]], both of which are [[Historical temperaments|historically significant]] for different reasons, leaving it mostly unexplored so far. | |||
=== Odd harmonics === | === Odd harmonics === | ||
Line 23: | Line 25: | ||
== Intervals == | == Intervals == | ||
Using the sharp fifth as a generator, 54edo require an incredibly large amount of ups and downs to notate, and using the flat fifth as a generator, 54edo requires an incredibly large amount of sharps and flats to notate. Because the flat fifth generates a diatonic scale with a chroma of 1 step, ups and downs are not needed in notation if the flat fifth is used. | Using the sharp fifth as a [[generator]], 54edo require an incredibly large amount of ups and downs to notate, and using the flat fifth as a generator, 54edo requires an incredibly large amount of sharps and flats to notate. Because the flat fifth generates a diatonic scale with a [[chroma]] of 1 step, ups and downs are not needed in notation if the flat fifth is used. | ||
{| class="wikitable" | {| class="wikitable" |