Xen concepts for beginners: Difference between revisions
Tags: Mobile edit Mobile web edit |
|||
Line 48: | Line 48: | ||
From the perspective of an edo user, another problem RTT solves is that there are very few small edos and they do not constitute that wide a palette. Especially in larger edos, RTT provides a way of not being overwhelmed with dozens of notes. | From the perspective of an edo user, another problem RTT solves is that there are very few small edos and they do not constitute that wide a palette. Especially in larger edos, RTT provides a way of not being overwhelmed with dozens of notes. | ||
RTT views edos as regular temperaments. | RTT views edos as regular temperaments. Under this view, edos simplify the infinite JI space to a finite set, deforming the intervals so that certain chosen intervals vanish. We can also approach simplifying JI ratios from edos themselves, namely how edos approximate each prime. This is a vector called a [[val]]. Vals map primes to a set number of edo steps and thus tell us how many edo steps each interval in JI is mapped to. The usual 12edo val (called the 12edo [[patent val]]) in the 5-limit is {{val| 12 19 28}}, as the 12edo intervals that are closest to 2/1, 3/1 and 5/1 are 12, 19 and 28 steps respectively. | ||
There are various temperaments in xen with varying levels of practicality. The most important one to know is probably [[Meantone]] temperament, which equates four fifths ((3/2)^4 = 81/16) with a major third plus two octaves (5/4 * 4 = 5 = 80/16), which is encoded by tempering out the syntonic comma [[81/80]] (monzo {{monzo| -4 4 -1 }}). | There are various temperaments in xen with varying levels of practicality. The most important one to know is probably [[Meantone]] temperament, which equates four fifths ((3/2)^4 = 81/16) with a major third plus two octaves (5/4 * 4 = 5 = 80/16), which is encoded by tempering out the syntonic comma [[81/80]] (monzo {{monzo| -4 4 -1 }}). |