40edo: Difference between revisions

BudjarnLambeth (talk | contribs)
m Add link to orphan page
Godtone (talk | contribs)
m Theory: 23 was missing
Line 4: Line 4:
Up to this point, all the multiples of 5 have had the 720 cent blackwood 5th as their best approximation of 3/2. 35edo combined the small circles of blackwood and whitewood 5ths, almost equally far from just, requiring you to use both to reach all keys. 40edo adds a diatonic 5th that's closer to just. However, it is still the second flattest diatonic 5th, only exceeded by 47edo in error, which results in it being inconsistent in the 5-limit - combining the best major and minor third will result in the blackwood 5th instead. As such, calling it a perfect 5th seems very much a misnomer. Despite all keys being reachable by stacking this 5th, it does not qualify as meantone either, tempering out [[177147/163840]] and [[1053/1024]] in the patent val instead of [[81/80]], which means 4 5ths make a near perfect [[16/13|tridecimal neutral 3rd]] and it takes a full 11 to reach the 5th harmonic. 81/80 is only tempered out in the 40c alternative val where the aforementioned high neutral 3rd is equated with 5/4 instead of the much more accurate 390-cent interval. The resulting [[5L 2s]] scale has large steps of 6 intervals and small ones of 5, putting sharps and flats right next to letters without any ups or downs in between and requiring a lot of them to notate more distant keys. It tempers out [[648/625]] in the 5-limit; [[225/224]] and in the 7-limit; [[99/98]], [[121/120]] and [[176/175]] in the 11-limit; and [[66/65]] in the 13-limit.
Up to this point, all the multiples of 5 have had the 720 cent blackwood 5th as their best approximation of 3/2. 35edo combined the small circles of blackwood and whitewood 5ths, almost equally far from just, requiring you to use both to reach all keys. 40edo adds a diatonic 5th that's closer to just. However, it is still the second flattest diatonic 5th, only exceeded by 47edo in error, which results in it being inconsistent in the 5-limit - combining the best major and minor third will result in the blackwood 5th instead. As such, calling it a perfect 5th seems very much a misnomer. Despite all keys being reachable by stacking this 5th, it does not qualify as meantone either, tempering out [[177147/163840]] and [[1053/1024]] in the patent val instead of [[81/80]], which means 4 5ths make a near perfect [[16/13|tridecimal neutral 3rd]] and it takes a full 11 to reach the 5th harmonic. 81/80 is only tempered out in the 40c alternative val where the aforementioned high neutral 3rd is equated with 5/4 instead of the much more accurate 390-cent interval. The resulting [[5L 2s]] scale has large steps of 6 intervals and small ones of 5, putting sharps and flats right next to letters without any ups or downs in between and requiring a lot of them to notate more distant keys. It tempers out [[648/625]] in the 5-limit; [[225/224]] and in the 7-limit; [[99/98]], [[121/120]] and [[176/175]] in the 11-limit; and [[66/65]] in the 13-limit.


40edo is more accurate on the 2.9.5.21.33.13.51.19 [[k*N_subgroups| 2*40 subgroup]], where it offers the same tuning as [[80edo|80edo]], and tempers out the same commas. It is also the first equal temperament to approximate both the 23rd and 19th harmonic, by tempering out the 9 cent comma to 4-edo, with 10 divisions therein.
40edo is more accurate on the 2.9.5.21.33.13.51.19.23 [[k*N_subgroups| 2*40 subgroup]], where it offers the same tuning as [[80edo|80edo]], and tempers out the same commas. It is also the first equal temperament to approximate both the 23rd and 19th harmonic, by tempering out the 9 cent comma to 4-edo, with 10 divisions therein.
=== Odd harmonics ===
=== Odd harmonics ===
{{harmonics in equal|40}}
{{harmonics in equal|40}}