34zpi: Difference between revisions
Contribution (talk | contribs) No edit summary |
Contribution (talk | contribs) No edit summary |
||
Line 31: | Line 31: | ||
== Intervals == | == Intervals == | ||
{| class="wikitable center-1 right-2 left-3 center-4" | |||
|- | |||
| colspan="3" style="text-align:left;" | JI ratios are comprised of 16-integer limit ratios,<br>and are stylized as follows to indicate their accuracy: | |||
* '''<u>Bold Underlined:</u>''' relative error < 8.333 % | |||
* '''Bold:''' relative error < 16.667 % | |||
* Normal: relative error < 25 % | |||
* <small>Small:</small> relative error < 33.333 % | |||
* <small><small>Small Small:</small></small> relative error < 41.667 % | |||
* <small><small><small>Small Small Small:</small></small></small> relative error < 50 % | |||
| style="text-align:right;" | <center>'''12edo'''</center><br>[[9/8|Whole tone]] = 2 steps<br>[[256/243|Limma]] = 1 step<br>[[2187/2048|Apotome]] = 1 step | |||
|- | |||
! Degree | |||
! Cents | |||
! Ratios | |||
! Ups and Downs Notation | |||
|- | |||
| 0 | |||
| 0.000 | |||
| | |||
| P1 | |||
|- | |||
| 1 | |||
| 99.807 | |||
| '''[[16/15]]''', [[15/14]], <small>[[14/13]]</small>, <small><small>[[13/12]]</small></small> | |||
| m2 | |||
|- | |||
| 2 | |||
| 199.614 | |||
| <small><small><small>[[12/11]]</small></small></small>, <small><small>[[11/10]]</small></small>, [[10/9]], '''<u>[[9/8]]'''</u>, <small>[[8/7]]</small>, <small><small><small>[[15/13]]</small></small></small> | |||
| M2 | |||
|- | |||
| 3 | |||
| 299.422 | |||
| <small>[[7/6]]</small>, '''[[13/11]]''', '''[[6/5]]''', <small><small><small>[[11/9]]</small></small></small> | |||
| m3 | |||
|- | |||
| 4 | |||
| 399.229 | |||
| <small><small>[[16/13]]</small></small>, '''[[5/4]]''', [[14/11]], <small><small>[[9/7]]</small></small> | |||
| M3 | |||
|- | |||
| 5 | |||
| 499.036 | |||
| <small><small><small>[[13/10]]</small></small></small>, '''<u>[[4/3]]'''</u>, <small><small>[[15/11]]</small></small> | |||
| P4 | |||
|- | |||
| 6 | |||
| 598.843 | |||
| <small><small><small>[[11/8]]</small></small></small>, '''[[7/5]]''', [[10/7]], <small><small>[[13/9]]</small></small>, <small><small><small>[[16/11]]</small></small></small> | |||
| A4, d5 | |||
|- | |||
| 7 | |||
| 698.650 | |||
| '''<u>[[3/2]]'''</u> | |||
| P5 | |||
|- | |||
| 8 | |||
| 798.457 | |||
| <small><small>[[14/9]]</small></small>, '''[[11/7]]''', '''[[8/5]]''', <small><small><small>[[13/8]]</small></small></small> | |||
| m6 | |||
|- | |||
| 9 | |||
| 898.265 | |||
| '''[[5/3]]''', <small><small>[[12/7]]</small></small> | |||
| M6 | |||
|- | |||
| 10 | |||
| 998.072 | |||
| <small>[[7/4]]</small>, '''<u>[[16/9]]'''</u>, [[9/5]] | |||
| m7 | |||
|- | |||
| 11 | |||
| 1097.879 | |||
| <small><small><small>[[11/6]]</small></small></small>, <small>[[13/7]]</small>, '''[[15/8]]''' | |||
| M7 | |||
|- | |||
| 12 | |||
| 1197.686 | |||
| '''<u>[[2/1]]'''</u> | |||
| P1 +1 oct | |||
|- | |||
| 13 | |||
| 1297.493 | |||
| [[15/7]], <small><small>[[13/6]]</small></small> | |||
| m2 +1 oct | |||
|- | |||
| 14 | |||
| 1397.301 | |||
| <small>[[11/5]]</small>, '''<u>[[9/4]]'''</u>, <small><small>[[16/7]]</small></small> | |||
| M2 +1 oct | |||
|- | |||
| 15 | |||
| 1497.108 | |||
| <small>[[7/3]]</small>, [[12/5]] | |||
| m3 +1 oct | |||
|- | |||
| 16 | |||
| 1596.915 | |||
| '''[[5/2]]''' | |||
| M3 +1 oct | |||
|- | |||
| 17 | |||
| 1696.722 | |||
| <small><small><small>[[13/5]]</small></small></small>, '''<u>[[8/3]]'''</u> | |||
| P4 +1 oct | |||
|- | |||
| 18 | |||
| 1796.529 | |||
| <small><small><small>[[11/4]]</small></small></small>, '''[[14/5]]''' | |||
| A4 +1 oct, d5 +1 oct | |||
|- | |||
| 19 | |||
| 1896.336 | |||
| '''<u>[[3/1]]'''</u> | |||
| P5 +1 oct | |||
|- | |||
| 20 | |||
| 1996.144 | |||
| [[16/5]], <small><small><small>[[13/4]]</small></small></small> | |||
| m6 +1 oct | |||
|- | |||
| 21 | |||
| 2095.951 | |||
| '''[[10/3]]''' | |||
| M6 +1 oct | |||
|- | |||
| 22 | |||
| 2195.758 | |||
| <small>[[7/2]]</small> | |||
| m7 +1 oct | |||
|- | |||
| 23 | |||
| 2295.565 | |||
| <small><small><small>[[11/3]]</small></small></small>, '''<u>[[15/4]]'''</u> | |||
| M7 +1 oct | |||
|- | |||
| 24 | |||
| 2395.372 | |||
| '''<u>[[4/1]]'''</u> | |||
| P1 +2 oct | |||
|- | |||
| 25 | |||
| 2495.180 | |||
| <small><small><small>[[13/3]]</small></small></small> | |||
| m2 +2 oct | |||
|- | |||
| 26 | |||
| 2594.987 | |||
| '''[[9/2]]''' | |||
| M2 +2 oct | |||
|- | |||
| 27 | |||
| 2694.794 | |||
| <small>[[14/3]]</small> | |||
| m3 +2 oct | |||
|- | |||
| 28 | |||
| 2794.601 | |||
| '''<u>[[5/1]]'''</u> | |||
| M3 +2 oct | |||
|- | |||
| 29 | |||
| 2894.408 | |||
| '''<u>[[16/3]]'''</u> | |||
| P4 +2 oct | |||
|- | |||
| 30 | |||
| 2994.215 | |||
| <small><small><small>[[11/2]]</small></small></small> | |||
| A4 +2 oct, d5 +2 oct | |||
|- | |||
| 31 | |||
| 3094.023 | |||
| '''<u>[[6/1]]'''</u> | |||
| P5 +2 oct | |||
|- | |||
| 32 | |||
| 3193.830 | |||
| <small><small><small>[[13/2]]</small></small></small> | |||
| m6 +2 oct | |||
|- | |||
| 33 | |||
| 3293.637 | |||
| | |||
| M6 +2 oct | |||
|- | |||
| 34 | |||
| 3393.444 | |||
| [[7/1]] | |||
| m7 +2 oct | |||
|- | |||
| 35 | |||
| 3493.251 | |||
| '''<u>[[15/2]]'''</u> | |||
| M7 +2 oct | |||
|- | |||
| 36 | |||
| 3593.059 | |||
| '''<u>[[8/1]]'''</u> | |||
| P1 +3 oct | |||
|- | |||
| 37 | |||
| 3692.866 | |||
| | |||
| m2 +3 oct | |||
|- | |||
| 38 | |||
| 3792.673 | |||
| '''[[9/1]]''' | |||
| M2 +3 oct | |||
|- | |||
| 39 | |||
| 3892.480 | |||
| | |||
| m3 +3 oct | |||
|- | |||
| 40 | |||
| 3992.287 | |||
| '''<u>[[10/1]]'''</u> | |||
| M3 +3 oct | |||
|- | |||
| 41 | |||
| 4092.094 | |||
| | |||
| P4 +3 oct | |||
|- | |||
| 42 | |||
| 4191.902 | |||
| <small><small>[[11/1]]</small></small> | |||
| A4 +3 oct, d5 +3 oct | |||
|- | |||
| 43 | |||
| 4291.709 | |||
| '''[[12/1]]''' | |||
| P5 +3 oct | |||
|- | |||
| 44 | |||
| 4391.516 | |||
| <small><small><small>[[13/1]]</small></small></small> | |||
| m6 +3 oct | |||
|- | |||
| 45 | |||
| 4491.323 | |||
| | |||
| M6 +3 oct | |||
|- | |||
| 46 | |||
| 4591.130 | |||
| [[14/1]] | |||
| m7 +3 oct | |||
|- | |||
| 47 | |||
| 4690.937 | |||
| '''<u>[[15/1]]'''</u> | |||
| M7 +3 oct | |||
|- | |||
| 48 | |||
| 4790.745 | |||
| '''[[16/1]]''' | |||
| P1 +4 oct | |||
|} | |||
== Approximation to JI == | == Approximation to JI == | ||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | |||
|+ style="white-space: nowrap;" | Intervals by direct approximation (even if inconsistent) | |||
|- | |||
! Ratio | |||
! Error (abs, [[Cent|¢]]) | |||
! Error (rel, [[Relative cent|%]]) | |||
|- | |||
| [[4/3]] | |||
| -0.991 | |||
| -0.993 | |||
|- | |||
| [[8/3]] | |||
| +1.323 | |||
| +1.325 | |||
|- | |||
| [[16/9]] | |||
| -1.982 | |||
| -1.986 | |||
|- | |||
| '''[[2/1]]''' | |||
| '''+2.314''' | |||
| '''+2.318''' | |||
|- | |||
| [[15/1]] | |||
| -2.669 | |||
| -2.674 | |||
|- | |||
| [[3/2]] | |||
| +3.305 | |||
| +3.311 | |||
|- | |||
| [[16/3]] | |||
| +3.637 | |||
| +3.644 | |||
|- | |||
| [[9/8]] | |||
| +4.296 | |||
| +4.304 | |||
|- | |||
| [[4/1]] | |||
| +4.628 | |||
| +4.637 | |||
|- | |||
| [[15/2]] | |||
| -4.983 | |||
| -4.992 | |||
|- | |||
| '''[[3/1]]''' | |||
| '''+5.619''' | |||
| '''+5.629''' | |||
|- | |||
| [[10/1]] | |||
| -5.974 | |||
| -5.985 | |||
|- | |||
| [[9/4]] | |||
| +6.609 | |||
| +6.622 | |||
|- | |||
| [[8/1]] | |||
| +6.941 | |||
| +6.955 | |||
|- | |||
| [[15/4]] | |||
| -7.296 | |||
| -7.311 | |||
|- | |||
| [[6/1]] | |||
| +7.932 | |||
| +7.948 | |||
|- | |||
| '''[[5/1]]''' | |||
| '''-8.287''' | |||
| '''-8.303''' | |||
|- | |||
| [[9/2]] | |||
| +8.923 | |||
| +8.941 | |||
|- | |||
| [[16/1]] | |||
| +9.255 | |||
| +9.273 | |||
|- | |||
| [[15/8]] | |||
| -9.610 | |||
| -9.629 | |||
|- | |||
| ''[[13/11]]'' | |||
| ''-10.212'' | |||
| ''-10.232'' | |||
|- | |||
| [[12/1]] | |||
| +10.246 | |||
| +10.266 | |||
|- | |||
| [[5/2]] | |||
| -10.601 | |||
| -10.622 | |||
|- | |||
| [[9/1]] | |||
| +11.237 | |||
| +11.259 | |||
|- | |||
| [[10/3]] | |||
| -11.592 | |||
| -11.614 | |||
|- | |||
| [[16/15]] | |||
| +11.924 | |||
| +11.947 | |||
|- | |||
| [[5/4]] | |||
| -12.915 | |||
| -12.940 | |||
|- | |||
| [[5/3]] | |||
| -13.906 | |||
| -13.933 | |||
|- | |||
| [[14/5]] | |||
| -14.017 | |||
| -14.044 | |||
|- | |||
| [[8/5]] | |||
| +15.229 | |||
| +15.258 | |||
|- | |||
| [[11/7]] | |||
| -15.965 | |||
| -15.996 | |||
|- | |||
| [[6/5]] | |||
| +16.220 | |||
| +16.251 | |||
|- | |||
| [[7/5]] | |||
| -16.331 | |||
| -16.362 | |||
|- | |||
| [[10/9]] | |||
| -17.211 | |||
| -17.244 | |||
|- | |||
| [[16/5]] | |||
| +17.543 | |||
| +17.577 | |||
|- | |||
| [[14/11]] | |||
| +18.279 | |||
| +18.315 | |||
|- | |||
| [[12/5]] | |||
| +18.534 | |||
| +18.569 | |||
|- | |||
| [[10/7]] | |||
| +18.645 | |||
| +18.681 | |||
|- | |||
| [[9/5]] | |||
| +19.524 | |||
| +19.562 | |||
|- | |||
| [[15/14]] | |||
| +19.636 | |||
| +19.674 | |||
|- | |||
| [[15/7]] | |||
| +21.949 | |||
| +21.992 | |||
|- | |||
| [[14/1]] | |||
| -22.304 | |||
| -22.347 | |||
|- | |||
| '''[[7/1]]''' | |||
| '''-24.618''' | |||
| '''-24.666''' | |||
|- | |||
| ''[[13/7]]'' | |||
| ''-26.177'' | |||
| ''-26.228'' | |||
|- | |||
| [[7/2]] | |||
| -26.932 | |||
| -26.984 | |||
|- | |||
| [[14/3]] | |||
| -27.923 | |||
| -27.977 | |||
|- | |||
| ''[[14/13]]'' | |||
| ''+28.491'' | |||
| ''+28.546'' | |||
|- | |||
| [[7/4]] | |||
| -29.246 | |||
| -29.302 | |||
|- | |||
| [[7/3]] | |||
| -30.237 | |||
| -30.295 | |||
|- | |||
| [[8/7]] | |||
| +31.560 | |||
| +31.621 | |||
|- | |||
| [[11/5]] | |||
| -32.296 | |||
| -32.359 | |||
|- | |||
| [[7/6]] | |||
| -32.551 | |||
| -32.614 | |||
|- | |||
| [[14/9]] | |||
| -33.542 | |||
| -33.606 | |||
|- | |||
| [[16/7]] | |||
| +33.874 | |||
| +33.939 | |||
|- | |||
| [[11/10]] | |||
| -34.610 | |||
| -34.677 | |||
|- | |||
| [[12/7]] | |||
| +34.864 | |||
| +34.932 | |||
|- | |||
| [[9/7]] | |||
| +35.855 | |||
| +35.925 | |||
|- | |||
| [[13/9]] | |||
| +37.775 | |||
| +37.848 | |||
|- | |||
| [[15/11]] | |||
| +37.915 | |||
| +37.988 | |||
|- | |||
| [[13/12]] | |||
| +38.765 | |||
| +38.840 | |||
|- | |||
| [[16/13]] | |||
| -39.756 | |||
| -39.833 | |||
|- | |||
| '''[[11/1]]''' | |||
| '''-40.584''' | |||
| '''-40.662''' | |||
|- | |||
| [[13/6]] | |||
| +41.079 | |||
| +41.159 | |||
|- | |||
| [[13/8]] | |||
| +42.070 | |||
| +42.151 | |||
|- | |||
| ''[[13/5]]'' | |||
| ''-42.508'' | |||
| ''-42.590'' | |||
|- | |||
| [[11/2]] | |||
| -42.897 | |||
| -42.980 | |||
|- | |||
| [[13/3]] | |||
| +43.393 | |||
| +43.477 | |||
|- | |||
| [[13/4]] | |||
| +44.384 | |||
| +44.470 | |||
|- | |||
| ''[[13/10]]'' | |||
| ''-44.822'' | |||
| ''-44.909'' | |||
|- | |||
| [[11/4]] | |||
| -45.211 | |||
| -45.299 | |||
|- | |||
| [[11/3]] | |||
| -46.202 | |||
| -46.291 | |||
|- | |||
| [[13/2]] | |||
| +46.698 | |||
| +46.788 | |||
|- | |||
| [[11/8]] | |||
| -47.525 | |||
| -47.617 | |||
|- | |||
| ''[[11/9]]'' | |||
| ''+47.986'' | |||
| ''+48.079'' | |||
|- | |||
| ''[[15/13]]'' | |||
| ''+48.127'' | |||
| ''+48.220'' | |||
|- | |||
| [[11/6]] | |||
| -48.516 | |||
| -48.610 | |||
|- | |||
| ''[[12/11]]'' | |||
| ''-48.977'' | |||
| ''-49.072'' | |||
|- | |||
| '''[[13/1]]''' | |||
| '''+49.012''' | |||
| '''+49.106''' | |||
|- | |||
| [[16/11]] | |||
| +49.839 | |||
| +49.935 | |||
|} | |||
== See also == | == See also == |