1848edo: Difference between revisions
Line 5: | Line 5: | ||
1848edo is a super strong 11-limit division, having the lowest 11-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]] than any division until [[6079edo|6079]]. | 1848edo is a super strong 11-limit division, having the lowest 11-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]] than any division until [[6079edo|6079]]. | ||
In the 5-limit it tempers out the minortone comma, {{monzo| -16 35 -17 }} and the [[atom]], {{monzo| 161 -84 -12 }} and thus tunes the [[atomic]] temperament, for which it also provides the [[optimal patent val]] in the 11-limit. In the 7-limit it tempers out the [[landscape comma]], 250047/250000, so it supports [[domain]] and [[akjayland]]. In the 11-limit it tempers out [[9801/9800]], 151263/151250, [[1771561/1771470]] | In the 5-limit it tempers out the minortone comma, {{monzo| -16 35 -17 }} and the [[atom]], {{monzo| 161 -84 -12 }} and thus tunes the [[atomic]] temperament, for which it also provides the [[optimal patent val]] in the 11-limit. In the 7-limit it tempers out the [[landscape comma]], 250047/250000, so it supports [[domain]] and [[akjayland]]. In the 11-limit it tempers out [[9801/9800]], 151263/151250, [[1771561/1771470]] 3294225/3294172, and the [[spoob]]. | ||
It is distinctly [[consistent]] through the [[15-odd-limit]] (though just barely), and tempers out the 13-limit commas [[4225/4224]] and [[6656/6655]]. Higher-limit prime harmonics represented by 1848edo with less than 10% error are 37, 61, and 83, of which 61 is accurate to 0.002 edosteps (and is inherited from [[231edo]]). The harmonics represented by less than 20% error are 19, 47, 59, 67, 89. | It is distinctly [[consistent]] through the [[15-odd-limit]] (though just barely), and tempers out the 13-limit commas [[4225/4224]] and [[6656/6655]]. Higher-limit prime harmonics represented by 1848edo with less than 10% error are 37, 61, and 83, of which 61 is accurate to 0.002 edosteps (and is inherited from [[231edo]]). The harmonics represented by less than 20% error are 19, 47, 59, 67, 89. |