27edo: Difference between revisions
ArrowHead294 (talk | contribs) mNo edit summary |
ArrowHead294 (talk | contribs) No edit summary |
||
Line 3: | Line 3: | ||
{{EDO intro|27}} | {{EDO intro|27}} | ||
== Theory == | == Theory == | ||
27edo divides the [[octave]] in 27 equal parts each exactly 44{{frac|4|9}} [[cent]]s in size. However, since the harmonics whose intervals it approximates well (3, 5, 7, 13, and 19) are all tuned sharp of just, 27edo is a prime candidate for [[stretched and compressed tuning|octave compression]]. The local zeta peak around 27 is at 27.086614, which corresponds to a step size of 44.3023 cents. More generally, narrowing the steps to between 44.2 and 44.35 cents would be better in theory | 27edo divides the [[octave]] in 27 equal parts each exactly 44{{frac|4|9}} [[cent]]s in size. However, since the harmonics whose intervals it approximates well (3, 5, 7, 13, and 19) are all tuned sharp of just, 27edo is a prime candidate for [[stretched and compressed tuning|octave compression]]. The local zeta peak around 27 is at 27.086614, which corresponds to a step size of 44.3023 cents. More generally, narrowing the steps to between 44.2 and 44.35 cents would be better in theory; [[43edt]], [[70ed6]], and [[97ed12]] are good options if octave compression is acceptable, and these narrow the octaves by 5.75, 3.53, and 2.55 cents, respectively. | ||
However, assuming just octaves, 27edo's fifth and harmonic seventh are both sharp by nine cents, and the major third is the same 400 cent major third as [[12edo]], sharp by 13.7 cents. The result is that [[6/5]], [[7/5]], and especially [[7/6]] are all tuned more accurately than this. It can be considered the superpythagorean counterpart of [[19edo]], as its 5th is audibly indistinguishable from [[superpyth|1/3 septimal comma superpyth]] in the same way that 19edo is audibly indistinguishable from [[1/3 syntonic comma meantone]], where three fifths in 19edo reach a near-perfect [[6/5]] and [[5/3]] and three fifths in 27edo reaching a near-perfect [[7/6]] and [[12/7]]. | However, assuming just octaves, 27edo's fifth and harmonic seventh are both sharp by nine cents, and the major third is the same 400 cent major third as [[12edo]], sharp by 13.7 cents. The result is that [[6/5]], [[7/5]], and especially [[7/6]] are all tuned more accurately than this. It can be considered the superpythagorean counterpart of [[19edo]], as its 5th is audibly indistinguishable from [[superpyth|1/3 septimal comma superpyth]] in the same way that 19edo is audibly indistinguishable from [[1/3 syntonic comma meantone]], where three fifths in 19edo reach a near-perfect [[6/5]] and [[5/3]] and three fifths in 27edo reaching a near-perfect [[7/6]] and [[12/7]]. |