Neutral and interordinal intervals in MOS scales: Difference between revisions

Inthar (talk | contribs)
No edit summary
Inthar (talk | contribs)
No edit summary
Line 7: Line 7:
# Given 0 ≤ ''k'' ≤ a + b &minus; 1, and assuming that the larger ''k''-step < the smaller (''k'' + 1)-step, the '''interordinal''' between ''k''-steps and (''k'' + 1)-steps, denoted ''k''×(''k'' + 1)(m)s (read "''k'' cross (''k'' + 1) (mos)step" or "''k'' inter (''k'' + 1) (mos)step"), is the interval exactly halfway between the larger ''k''-step and the smaller (''k'' + 1)-step.
# Given 0 ≤ ''k'' ≤ a + b &minus; 1, and assuming that the larger ''k''-step < the smaller (''k'' + 1)-step, the '''interordinal''' between ''k''-steps and (''k'' + 1)-steps, denoted ''k''×(''k'' + 1)(m)s (read "''k'' cross (''k'' + 1) (mos)step" or "''k'' inter (''k'' + 1) (mos)step"), is the interval exactly halfway between the larger ''k''-step and the smaller (''k'' + 1)-step.
#: If the smaller (''k'' + 1)-step is ''strictly larger'' than the larger ''k''-step in ''basic'' aLbs, ''k''×(''k'' + 1) is called a '''proper interordinal'''. If a > b, then aLbs{{angbr|E}} has a + 1 proper interordinals, including 0×1ms and (a+b&minus;1)×(a+b)ms.
#: If the smaller (''k'' + 1)-step is ''strictly larger'' than the larger ''k''-step in ''basic'' aLbs, ''k''×(''k'' + 1) is called a '''proper interordinal'''. If a > b, then aLbs{{angbr|E}} has a + 1 proper interordinals, including 0×1ms and (a+b&minus;1)×(a+b)ms.
#: We call s/2 (or 0×1ms) '''interizer'''{{idiosyncratic}}. The interizer is of note since the following holds for any proper interordinal interval ''k''-inter-(''k'' + 1)-step:
#: We call s/2 (or 0×1ms) the '''interizer'''{{idiosyncratic}}. The interizer is of note since the following holds for any proper interordinal interval ''k''-inter-(''k'' + 1)-step:
#: ''k''-inter-(''k'' + 1)-step = larger ''k''-step + s/2 = smaller (''k'' + 1)-step &minus; s/2.
#: ''k''-inter-(''k'' + 1)-step = larger ''k''-step + s/2 = smaller (''k'' + 1)-step &minus; s/2.
Neutral ''k''-steps generalize neutral interval categories based on the diatonic MOS, which are:
Neutral ''k''-steps generalize neutral interval categories based on the diatonic MOS, which are: