The Riemann zeta function and tuning: Difference between revisions

Akselai (talk | contribs)
Akselai (talk | contribs)
Line 23: Line 23:
If ''s'' is greater than one, this does converge. However, we might want to make a few adjustments. For one thing, if the error is low enough that the tuning is consistent, then the error of the square of a prime is twice that of the prime, of the cube tripled, and so forth until the error becomes inconsistent. When the weighting uses logarithms and error measures are consistent, then the logarithmic weighting cancels this effect out, so we might consider that prime powers were implicitly included in the Tenney-Euclidean measure. We can go ahead and include them by adding a factor of 1/''n'' for each prime power ''p''<sup>''n''</sup>. A somewhat peculiar but useful way to write the result of doing this is in terms of the [[Wikipedia:Von Mangoldt function|Von Mangoldt function]], an [[Wikipedia:arithmetic function|arithmetic function]] on positive integers which is equal to ln ''p'' on prime powers ''p''<sup>''n''</sup>, and is zero elsewhere. This is written using a capital lambda, as Λ(''n''), and in terms of it we can include prime powers in our error function as
If ''s'' is greater than one, this does converge. However, we might want to make a few adjustments. For one thing, if the error is low enough that the tuning is consistent, then the error of the square of a prime is twice that of the prime, of the cube tripled, and so forth until the error becomes inconsistent. When the weighting uses logarithms and error measures are consistent, then the logarithmic weighting cancels this effect out, so we might consider that prime powers were implicitly included in the Tenney-Euclidean measure. We can go ahead and include them by adding a factor of 1/''n'' for each prime power ''p''<sup>''n''</sup>. A somewhat peculiar but useful way to write the result of doing this is in terms of the [[Wikipedia:Von Mangoldt function|Von Mangoldt function]], an [[Wikipedia:arithmetic function|arithmetic function]] on positive integers which is equal to ln ''p'' on prime powers ''p''<sup>''n''</sup>, and is zero elsewhere. This is written using a capital lambda, as Λ(''n''), and in terms of it we can include prime powers in our error function as


<math>\displaystyle \sum_{n \geq 1} \frac{\Lambda(n)}{\ln n} \frac{||x \log_2 n||^2}{n^s}</math>
<math>\displaystyle \xi_\infty(x) = \sum_{n \geq 1} \frac{\Lambda(n)}{\ln n} \frac{||x \log_2 n||^2}{n^s}</math>


where the summation is taken formally over all positive integers, though only the primes and prime powers make a nonzero contribution.
where the summation is taken formally over all positive integers, though only the primes and prime powers make a nonzero contribution.