Distributional evenness: Difference between revisions

Inthar (talk | contribs)
Inthar (talk | contribs)
Line 5: Line 5:


== Extended definition ==
== Extended definition ==
Let ''r'' ≥ 2 and let <math>S: \mathbb{Z}\to\mathbb{R}</math> be an ''r''-ary [[periodic scale]] with length ''n'' (i.e. ''S''(''kn'') = ''kP'' where ''P'' is the period), with step sizes ''x''<sub>1</sub>, ..., ''x''<sub>''r''</sub>, i.e. such that <math>\Delta S(i) := S(i+1)-S(i)\in \{x_1, ..., x_r\} \forall i \in \mathbb{Z}.</math> The scale ''S'' is ''distributionally even'' if for every ''i'' ∈ {1, ..., ''r''},  (Δ''S'')<sup>&minus;1</sup>(''x''<sub>''i''</sub>) is a [[maximally even]] MOS in '''Z'''/''n'''''Z'''. (For the original definition of DE, simply set ''r'' = 2.)
Let ''r'' ≥ 2 and let <math>S: \mathbb{Z}\to\mathbb{R}</math> be an ''r''-ary [[periodic scale]] with length ''n'' (i.e. ''S''(''kn'') = ''kP'' where ''P'' is the period), with step sizes ''x''<sub>1</sub>, ..., ''x''<sub>''r''</sub>, i.e. such that <math>\Delta S(i) := S(i+1)-S(i)\in \{x_1, ..., x_r\} \forall i \in \mathbb{Z}.</math> The scale ''S'' is ''distributionally even'' if for every ''i'' ∈ {1, ..., ''r''},  (Δ''S'')<sup>&minus;1</sup>(''x''<sub>''i''</sub>) is a [[maximally even]] MOS in <math>\mathbb{Z}/n\mathbb{Z}</math> (For the original definition of DE, simply set ''r'' = 2.)


Using this definition, a scale word on ''r'' letters ''x''<sub>1</sub>, ..., ''x''<sub>''r''</sub> is DE if and only if for every ''i'' ∈ {1, ..., ''r''}, the binary scale obtained by equating all step sizes except ''x''<sub>''i''</sub> is DE. This generalization of DE is thus an extraordinarily strong property: distributionally even scales over ''r'' letters are a subset of [[product word]]s of ''r'' &minus; 1 MOS scales, which can be thought of as temperament-agnostic [[Fokker block]]s.
Using this definition, a scale word on ''r'' letters ''x''<sub>1</sub>, ..., ''x''<sub>''r''</sub> is DE if and only if for every ''i'' ∈ {1, ..., ''r''}, the binary scale obtained by equating all step sizes except ''x''<sub>''i''</sub> is DE. This generalization of DE is thus an extraordinarily strong property: distributionally even scales over ''r'' letters are a subset of [[product word]]s of ''r'' &minus; 1 MOS scales, which can be thought of as temperament-agnostic [[Fokker block]]s.