Step variety: Difference between revisions
Line 15: | Line 15: | ||
For ''r'' ≥ 1, the number of possible patterns (up to rotation) for periodic scales of size ''n'' ≥ ''r'' on ''r'' ordered step sizes ''x''<sub>1</sub> > ''x''<sub>2</sub> > ... > ''x''<sub>''r''</sub> is | For ''r'' ≥ 1, the number of possible patterns (up to rotation) for periodic scales of size ''n'' ≥ ''r'' on ''r'' ordered step sizes ''x''<sub>1</sub> > ''x''<sub>2</sub> > ... > ''x''<sub>''r''</sub> is | ||
<math>\displaystyle{\dfrac{1}{n} \sum_{d\mid n} \phi(d) \sum_{j=1}^r (-1)^{r-j} {r \choose j} j^{n/d} | <math>\displaystyle{\dfrac{1}{n} \sum_{d\mid n} \phi(d) \sum_{j=1}^r (-1)^{r-j} {r \choose j} j^{n/d}} \\ | ||
=\displaystyle{\dfrac{1}{n} \sum_{d\mid n} \phi(d) S(n/d, k)}</math> | |||
where <math>\phi</math> is the Euler totient function and <math>S(n, k)</math> is the Stirling number of the second kind for the number of ways to partition an ''n'''element set into ''k'' distinguished parts. | |||
== List of named ternary scales == | == List of named ternary scales == |