3600edo: Difference between revisions

Eliora (talk | contribs)
Eliora (talk | contribs)
Subsets and supersets: adopt template
Line 16: Line 16:
=== Subsets and supersets ===
=== Subsets and supersets ===
[[Category:Equal divisions of the octave|####]]
[[Category:Equal divisions of the octave|####]]
3600edo factors as  
3600edo factors as {{Factorization|3600}}, and has subset edos {{EDOs|1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, 36, 40, 45, 48, 50, 60, 72, 75, 80, 90, 100, 120, 144, 150, 180, 200, 225, 240, 300, 360, 400, 450, 600, 720, 900, 1200, 1800}}.  
<math>3600 = 2^{4} \cdot 3^{2} \cdot 5^{2}</math>, and has subset edos {{EDOs|1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, 36, 40, 45, 48, 50, 60, 72, 75, 80, 90, 100, 120, 144, 150, 180, 200, 225, 240, 300, 360, 400, 450, 600, 720, 900, 1200, 1800}}.  


A cent is therefore represented by three steps; and the Dröbisch angle, which is [[360edo|logarithmically 1/360 of the octave]], is ten steps. EDOs corresponding to other notable divisors include [[72edo]], which has found a dissemination in practice and one step of which is represented by 50 steps, and [[200edo]], which holds the continued fraction expansion record for the best perfect fifth and its step is represented by 18 steps.
A cent is therefore represented by three steps; and the Dröbisch angle, which is [[360edo|logarithmically 1/360 of the octave]], is ten steps. EDOs corresponding to other notable divisors include [[72edo]], which has found a dissemination in practice and one step of which is represented by 50 steps, and [[200edo]], which holds the continued fraction expansion record for the best perfect fifth and its step is represented by 18 steps.