User:Ganaram inukshuk/Sandbox: Difference between revisions

Ganaram inukshuk (talk | contribs)
Ganaram inukshuk (talk | contribs)
Testing out layouts for mode degree tables; cleaned up test code that's no longer needed; organized page
Line 3: Line 3:
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)


== Test area ==
== Template test area==
 
=== Expanding the mos intro ===
The following pieces of information may be worth adding:
 
* The specific step pattern for the true mos. (The template wiSmall edos (or ed<nowiki><p/q>'s) that support the mos.</nowiki>ll have a link to the page for rotations.)
* Simple edos (or ed<nowiki><p/q>) that support the mos.</nowiki>
* For mosses with more than 10 notes, that the mos descends from another, TAMNAMS-named mos and how it relates back to that ancestor mos. This requires standardizing the naming scheme for descendant mosses before it can be added.
==== Base wording (for TAMNAMS-named mosses) ====
'''''x''L ''y''s<''p/q''>''', also called '''mosname''', is a(n) ''equave-equivalent'' moment-of-symmetry scale, containing ''x'' large steps(s) and ''y'' small step(s) and repeating every ''equave''. Scales of this form have a step pattern of ''step-pattern'' or some rotation thereof, with a generator that ranges from ''g1''¢ to ''g2''¢ or from ''d1''¢ or ''d2''¢. Equal divisions of the ''equave'' that support this scale's step pattern include (''2nx+ny'')ed''<nowiki><p/q></nowiki>'' (L = 2 and s = 1), (''3nx+ny'')''ed<nowiki><p/q></nowiki>'' (L = 3 and s = 1), and (''3nx+2ny'')ed''<nowiki><p/q></nowiki>'' (L = 3 and s = 2)''.''
 
'''''nx''L ''ny''s<''p/q''>''', also called '''mosname''', is a(n) ''equave-equivalent'' moment-of-symmetry scale, containing ''nx'' large steps(s) and ''ny'' small step(s), with a period of ''x'' large step(s) and ''y'' small steps(s) that repeats every ''equave-fraction'', or ''n times'' every ''equave''. Scales of this form have a step pattern of ''step-pattern'' or some rotation thereof, with a generator that ranges from ''g1''¢ to ''g2''¢ or from ''d1''¢ or ''d2''¢. Equal divisions of the ''equave'' that support this scale's step pattern include (''2x+y'')ed''<nowiki><p/q></nowiki>'' (L = 2 and s = 1), (''3x+y'')''ed<nowiki><p/q></nowiki>'' (L = 3 and s = 1), and (''3x+2y'')ed''<nowiki><p/q></nowiki>'' (L = 3 and s = 2)''.''
 
==== Base wording (for mos descendants) ====
'''''x''L ''y''s<''p/q''>''', also called '''mosname''', is a(n) ''extension'' scale of the ''equave-equivalent'' moment-of-symmetry scale '''''z''L ''w''s<''p/q''>''''','' expanded to ''x'' large steps(s) and ''y'' small step(s) and repeating every ''equave''. Scales of this form have a step pattern of ''step-pattern'' or some rotation thereof, with a generator that ranges from ''g1''¢ to ''g2''¢ or from ''d1''¢ or ''d2''¢. Equal divisions of the ''equave'' that support this scale's step pattern include (''2nx+ny'')ed''<nowiki><p/q></nowiki>'' (L = 2 and s = 1), (''3nx+ny'')''ed<nowiki><p/q></nowiki>'' (L = 3 and s = 1), and (''3nx+2ny'')ed''<nowiki><p/q></nowiki>'' (L = 3 and s = 2)''.''
 
'''''nx''L ''ny''s<''p/q''>''', also called '''mosname''', is a(n) ''extension'' scale of the ''equave-equivalent'' moment-of-symmetry scale '''''nz''L ''nw''s''<nowiki><p/q></nowiki>''''', expanded to ''nx'' large steps(s) and ''ny'' small step(s), with a period of ''x'' large step(s) and ''y'' small steps(s) that repeats every ''equave-fraction'', or ''n times'' every ''equave''. Scales of this form have a step pattern of ''step-pattern'' or some rotation thereof, with a generator that ranges from ''g1''¢ to ''g2''¢ or from ''d1''¢ or ''d2''¢. Equal divisions of the ''equave'' that support this scale's step pattern include (''2x+y'')ed''<nowiki><p/q></nowiki>'' (L = 2 and s = 1), (''3x+y'')''ed<nowiki><p/q></nowiki>'' (L = 3 and s = 1), and (''3x+2y'')ed''<nowiki><p/q></nowiki>'' (L = 3 and s = 2)''.''
 
==== Examples ====
'''5L 7s''', also called '''(hard) diachromatic''' or '''p-chromatic''', is a chromatic scale of the moment-of-symmetry scale 5L 2s, expanded to 5 large steps and 7 small steps, repeating every octave. This scale has a step pattern of LssLsLsLssLs, or some rotation thereof, with a generator that ranges from 700¢ to 720¢, or from 480¢ to 500¢. Equal divisions of the octave that support this scale's step pattern include 17edo, 22edo, and 29edo.
 
=== Mos degrees template with new code===
Template to call module without affecting the current template (fill in arguments as needed):
<syntaxhighlight>
{{#invoke:MOS_degrees_v2|mos_degrees_frame
|Scale Signature=
|Step Ratio=
|MOS Prefix=
|Show Abbreviations=
|JI Ratios=
|Notation=
|UDP=
}}
</syntaxhighlight>
Instances of module for testing:
 
{{#invoke:MOS_degrees_v2|mos_degrees_frame
|Scale Signature=5L 2s
|Step Ratio=2/1; 3/1; 3/2
|MOS Prefix=
|Show Abbreviations=1
|Number of Alterations=1
|Notation=Default
|UDP=
|JI Ratios=P3md:4/3; P4md: 3/2
}}
 
{{#invoke:MOS_degrees_v2|mos_degrees_frame
|Scale Signature=5L 4s
|Step Ratio=
|MOS Prefix=
|Show Abbreviations=
|Number of Alterations=
|Notation=
|UDP=
|JI Ratios=
}}
 
{{#invoke:MOS_degrees_v2|mos_degrees_frame
|Scale Signature=4L 3s
|Step Ratio=2/1; 3/1; 3/2
|MOS Prefix=
|Show Abbreviations=1
|Number of Alterations=1
|Notation=Default
|UDP=
|JI Ratios=
M1md: 8/7;
P2md: 77/64, 6/5;
m3md: 14/11;
M3md:11/8;
m4md: 16/11;
M4md: 11/7;
P5md: 5/3;
m6md: 7/4;
}}
 
===Mos degrees template (version 2) mockup ===


===MOS mode degrees===
{| class="wikitable sortable"
{| class="wikitable sortable"
|+ Scale degree of 4L 3s
|+Scale degrees of 5L 2s modes (step pattern of LsLLsAs)
! rowspan="2" class="unsortable" | Scale degree
! rowspan="2" |UDP and alterations
! rowspan="2" class="unsortable" | Abbrev.
! rowspan="2" |Rotational Order
! rowspan="2" class="unsortable" | On J
! rowspan="2" |Step pattern
! colspan="2" |11edo (Basic, L:s = 2:1)
! rowspan="2" class="unsortable" |Mode names
! colspan="2" |15edo (Hard, L:s = 3:1)
! colspan="8" class="unsortable" |Scale degree (mosdegree)
! colspan="2" |18edo (Soft, L:s = 3:2)
! Rowspan="2" class="unsortable" | Approx. JI Ratios
|-
|-
! Steps
! class="unsortable" |0
! Cents
! class="unsortable" |1
! Steps
! class="unsortable" |2
! Cents
! class="unsortable" |3
! Steps
! class="unsortable" |4
! Cents
! class="unsortable" |5
! class="unsortable" |6
! class="unsortable" |7
|-
|-
| '''Perfect 0-smistep'''
|<nowiki>2|4 M6md</nowiki>
| P0md
|1
| J
|LsLLsAs
| 0
| Harmonic minor
| 0
|Perf.
| 0
|Maj.
| 0
|Min.
| 0
|Perf.
| 0
|Perf.
| 1/1 (exact), 1/1
|Min.
|Maj.
|Perf.
|-
|-
| Augmented 0-smistep
|<nowiki>0|6 M5md</nowiki>
| A0md
|2
| J&
|sLLsAsL
| 1
|Locrian #6
| 109.1
|Perf.
| 2
|Min.
| 160
|Min.
| 1
|Perf.
| 66.7
|Dim.
|
| Maj.
|Min.
|Perf.
|-
|-
| Diminished 1-smistep
|<nowiki>5|1 A4md</nowiki>
| d1md
|3
| K@@
|LLsAsLs
| 0
|Ionian augmented
| 0
|Perf.
| -1
|Maj.
| -80
|Maj.
| 1
|Perf.
| 66.7
|Aug.
|
| Maj.
|Maj.
|Perf.
|-
|-
| Minor 1-smistep
|<nowiki>3|3 A3md</nowiki>
| m1md
|4
| K@
|LsAsLsL
| 1
|Dorian #4
| 109.1
|Perf.
| 1
|Maj.
| 80
|Min.
| 2
|Aug.
| 133.3
|Perf.
|
|Maj.
|Min.
|Perf.
|-
|-
| Major 1-smistep
|<nowiki>1|5 M2md</nowiki>
| M1md
|5
| K
|sAsLsLL
| 2
|Phrygian dominant
| 218.2
|Perf.
| 3
| Min.
| 240
|Maj.
| 3
| Perf.
| 200
|Perf.
|
|Min.
|Min.
|Perf.
|-
|-
| Augmented 1-smistep
|<nowiki>6|0 A1md</nowiki>
| A1md
|6
| K&
|AsLsLLs
| 3
| Lydian #2
| 327.3
|Perf.
| 5
|Aug.
| 400
|Maj.
| 4
|Aug.
| 266.7
|Perf.
|
|Maj.
|Maj.
|Perf.
|-
|-
| Diminished 2-smistep
|<nowiki>0|6 d3md d6md</nowiki>
| d2md
|7
| L@
|sLsLLsA
| 2
|Locrian b4 bb7
| 218.2
|Perf.
| 2
|Min.
| 160
|Min.
| 4
|Dim.
| 266.7
|Dim.
|
|Min.
|Dim.
|Perf.
|}
 
{| class="wikitable sortable"
|+Scale degrees of 5L 2s modes (step pattern of LLLLsLs)
! rowspan="2" |UDP and alterations
! rowspan="2" |Rotational Order
! rowspan="2" |Step pattern
! colspan="8" class="unsortable" |Scale degree (mosdegree)
|-
|-
| '''Perfect 2-smistep'''
! class="unsortable" |0
| P2md
! class="unsortable" |1
| L
! class="unsortable" |2
| 3
! class="unsortable" |3
| 327.3
! class="unsortable" |4
| 4
! class="unsortable" | 5
| 320
! class="unsortable" |6
| 5
! class="unsortable" |7
| 333.3
|
|-
|-
| Augmented 2-smistep
|<nowiki>6|0 A4md</nowiki>
| A2md
|1
| L&
|LLLLsLs
| 4
|Perf.
| 436.4
|Maj.
| 6
|Maj.
| 480
|Aug.
| 6
|Aug.
| 400
|Maj.
|
|Maj.
|Perf.
|-
|-
| 2× Augmented 2-smistep
|<nowiki>6|0 m6md</nowiki>
| AA2md
|2
| L&&
|LLLsLsL
| 5
|Perf.
| 545.5
|Maj.
| 8
|Maj.
| 640
|Aug.
| 7
|Perf.
| 466.7
|Maj.
|
|Min.
|Perf.
|-
|-
| Diminished 3-smistep
|<nowiki>4|2 m5md</nowiki>
| d3md
|3
| M@@
|LLsLsLL
| 3
|Perf.
| 327.3
|Maj.
| 3
|Maj.
| 240
|Perf.
| 6
| Perf.
| 400
|Min.
|
|Min.
| Perf.
|-
|-
| Minor 3-smistep
|<nowiki>2|4 d4md</nowiki>
| m3md
|4
| M@
|LsLsLLL
| 4
|Perf.
| 436.4
|Maj.
| 5
|Min.
| 400
|Perf.
| 7
|Dim.
| 466.7
|Min.
|
|Min.
|Perf.
|-
|-
| Major 3-smistep
|<nowiki>0|6 d3md</nowiki>
| M3md
|5
| M
|sLsLLLL
| 5
|Perf.
| 545.5
|Min.
| 7
|Min.
| 560
|Dim.
| 8
|Dim.
| 533.3
|Min.
|
| Min.
|Perf.
|-
|-
| Augmented 3-smistep
|<nowiki>5|1 m2md</nowiki>
| A3md
|6
| M&
|LsLLLLs
| 6
|Perf.
| 654.5
|Maj.
| 9
|Min.
| 720
|Perf.
| 9
|Perf.
| 600
|Maj.
|
|Maj.
| Perf.
|-
|-
| Diminished 4-smistep
|<nowiki>3|3 m1md</nowiki>
| d4md
|7
| N@
|sLLLLsL
| 5
|Perf.
| 545.5
| Min.
| 6
|Min.
| 480
|Perf.
| 9
| Perf.
| 600
|Maj.
|
|Min.
|Perf.
|}
 
{| class="wikitable sortable"
|+Scale degrees of 5L 2s modes (step pattern of LLLLLss)
! rowspan="2" |UDP and alterations
! rowspan="2" | Rotational Order
! rowspan="2" |Step pattern
! colspan="8" class="unsortable" |Scale degree (mosdegree)
|-
|-
| Minor 4-smistep
! class="unsortable" |0
| m4md
! class="unsortable" | 1
| N
! class="unsortable" |2
| 6
! class="unsortable" |3
| 654.5
! class="unsortable" |4
| 8
! class="unsortable" |5
| 640
! class="unsortable" |6
| 10
! class="unsortable" |7
| 666.7
|
|-
|-
| Major 4-smistep
|<nowiki>6|0 A4md A5md</nowiki>
| M4md
|1
| N&
|LLLLLss
| 7
|Perf.
| 763.6
|Maj.
| 10
|Maj.
| 800
|Aug.
| 11
|Aug.
| 733.3
|Aug.
|
|Maj.
|Perf.
|-
|-
| Augmented 4-smistep
|<nowiki>6|0 A4md m6md</nowiki>
| A4md
|2
| N&&
| LLLLssL
| 8
|Perf.
| 872.7
|Maj.
| 12
|Maj.
| 960
|Aug.
| 12
|Aug.
| 800
|Maj.
|
| Min.
| Perf.
|-
|-
| 2× Diminished 5-smistep
|<nowiki>6|0 m5md m6md</nowiki>
| dd5md
|3
| O@@
|LLLssLL
| 6
|Perf.
| 654.5
| Maj.
| 7
|Maj.
| 560
|Aug.
| 11
| Perf.
| 733.3
|Min.
|
| Min.
|Perf.
|-
|-
| Diminished 5-smistep
|<nowiki>4|2 d4md m5md</nowiki>
| d5md
|4
| O@
|LLssLLL
| 7
|Perf.
| 763.6
|Maj.
| 9
|Maj.
| 720
|Perf.
| 12
| Dim.
| 800
|Min.
|
|Min.
| Perf.
|-
|-
| '''Perfect 5-smistep'''
|<nowiki>2|4 d3md d4md</nowiki>
| P5md
|5
| O
|LssLLLL
| 8
| Perf.
| 872.7
|Maj.
| 11
|Min.
| 880
|Dim.
| 13
|Dim.
| 866.7
|Min.
|
|Min.
|Perf.
|-
|-
| Augmented 5-smistep
|<nowiki>0|6 d2md d3md</nowiki>
| A5md
|6
| O&
| ssLLLLL
| 9
|Perf.
| 981.8
|Min.
| 13
| Dim.
| 1040
| Dim.
| 14
|Dim.
| 933.3
| Min.
|
| Min.
|Perf.
|-
|-
| Diminished 6-smistep
|<nowiki>5|1 m1md m2md</nowiki>
| d6md
|7
| P@
|sLLLLLs
| 8
|Perf.
| 872.7
|Min.
| 10
|Min.
| 800
| Perf.
| 14
| Perf.
| 933.3
|Maj.
|
|Maj.
|-
|Perf.
| Minor 6-smistep
| m6md
| P
| 9
| 981.8
| 12
| 960
| 15
| 1000
|
|-
| Major 6-smistep
| M6md
| P&
| 10
| 1090.9
| 14
| 1120
| 16
| 1066.7
|
|-
| Augmented 6-smistep
| A6md
| P&&
| 11
| 1200
| 16
| 1280
| 17
| 1133.3
|
|-
| Diminished 7-smistep
| d7md
| J@
| 10
| 1090.9
| 13
| 1040
| 17
| 1133.3
|
|-
| '''Perfect 7-smistep'''
| P7md
| J
| 11
| 1200
| 15
| 1200
| 18
| 1200
| 2/1 (exact)
|}
|}


===Step sizes template===
===MOS step sizes ===
{{MOS degrees|Scale Signature=4L 3s}}
{| class="wikitable sortable"
{| class="wikitable sortable"
|+3L 4s step sizes
|+3L 4s step sizes
! rowspan="2" |Interval
! rowspan="2" |Interval
! colspan="2" |Basic 3L 4s
! colspan="2" | Basic 3L 4s
(10edo, L:s = 2:1)
(10edo, L:s = 2:1)
! colspan="2" |Hard 3L 4s
! colspan="2" |Hard 3L 4s
(13edo, L:s = 3:1)
(13edo, L:s = 3:1)
! colspan="2" |Soft 3L 4s
! colspan="2" | Soft 3L 4s
(17edo, L:s = 3:2)
(17edo, L:s = 3:2)
! rowspan="2" |Approx. JI ratios
! rowspan="2" |Approx. JI ratios
|-
|-
!Steps
!Steps
!Cents
! Cents
!Steps
!Steps
!Cents
!Cents
Line 429: Line 337:
|-
|-
|Large step
|Large step
| 2
|2
|240¢
|240¢
|3
| 3
|276.9¢
|276.9¢
|3
| 3
|211.8¢
|211.8¢
|Hide column if no ratios given
| Hide column if no ratios given
|-
|-
|Small step
| Small step
| 1
|1
|120¢
|120¢
|1
|1
|92.3¢
| 92.3¢
|2
|2
|141.2¢
|141.2¢
Line 449: Line 357:
|3
|3
|360¢
|360¢
|4
| 4
|369.2¢
|369.2¢
|5
|5
Line 460: Line 368:
*JI ratios column only shows if there are any ratios to show
*JI ratios column only shows if there are any ratios to show


===Mbox template test===
===Expanded MOS intro===
The following pieces of information may be worth adding:
 
*The specific step pattern for the true mos. (The template will have a link to the page for rotations.)
*Simple edos (or ed<nowiki><p/q>) that support the mos.</nowiki>
*For mosses with more than 10 notes, that the mos descends from another, TAMNAMS-named mos and how it relates back to that ancestor mos. This requires standardizing the naming scheme for descendant mosses before it can be added.
====Base wording (for TAMNAMS-named mosses)====
'''''x''L ''y''s<''p/q''>''', also called '''mosname''', is a(n) ''equave-equivalent'' moment-of-symmetry scale, containing ''x'' large steps(s) and ''y'' small step(s) and repeating every ''equave''. Scales of this form have a step pattern of ''step-pattern'' or some rotation thereof, with a generator that ranges from ''g1''¢ to ''g2''¢ or from ''d1''¢ or ''d2''¢. Equal divisions of the ''equave'' that support this scale's step pattern include (''2nx+ny'')ed''<nowiki><p/q></nowiki>'' (L = 2 and s = 1), (''3nx+ny'')''ed<nowiki><p/q></nowiki>'' (L = 3 and s = 1), and (''3nx+2ny'')ed''<nowiki><p/q></nowiki>'' (L = 3 and s = 2)''.''
 
'''''nx''L ''ny''s<''p/q''>''', also called '''mosname''', is a(n) ''equave-equivalent'' moment-of-symmetry scale, containing ''nx'' large steps(s) and ''ny'' small step(s), with a period of ''x'' large step(s) and ''y'' small steps(s) that repeats every ''equave-fraction'', or ''n times'' every ''equave''. Scales of this form have a step pattern of ''step-pattern'' or some rotation thereof, with a generator that ranges from ''g1''¢ to ''g2''¢ or from ''d1''¢ or ''d2''¢. Equal divisions of the ''equave'' that support this scale's step pattern include (''2x+y'')ed''<nowiki><p/q></nowiki>'' (L = 2 and s = 1), (''3x+y'')''ed<nowiki><p/q></nowiki>'' (L = 3 and s = 1), and (''3x+2y'')ed''<nowiki><p/q></nowiki>'' (L = 3 and s = 2)''.''
 
====Base wording (for mos descendants)====
'''''x''L ''y''s<''p/q''>''', also called '''mosname''', is a(n) ''extension'' scale of the ''equave-equivalent'' moment-of-symmetry scale '''''z''L ''w''s<''p/q''>''''','' expanded to ''x'' large steps(s) and ''y'' small step(s) and repeating every ''equave''. Scales of this form have a step pattern of ''step-pattern'' or some rotation thereof, with a generator that ranges from ''g1''¢ to ''g2''¢ or from ''d1''¢ or ''d2''¢. Equal divisions of the ''equave'' that support this scale's step pattern include (''2nx+ny'')ed''<nowiki><p/q></nowiki>'' (L = 2 and s = 1), (''3nx+ny'')''ed<nowiki><p/q></nowiki>'' (L = 3 and s = 1), and (''3nx+2ny'')ed''<nowiki><p/q></nowiki>'' (L = 3 and s = 2)''.''
 
'''''nx''L ''ny''s<''p/q''>''', also called '''mosname''', is a(n) ''extension'' scale of the ''equave-equivalent'' moment-of-symmetry scale '''''nz''L ''nw''s''<nowiki><p/q></nowiki>''''', expanded to ''nx'' large steps(s) and ''ny'' small step(s), with a period of ''x'' large step(s) and ''y'' small steps(s) that repeats every ''equave-fraction'', or ''n times'' every ''equave''. Scales of this form have a step pattern of ''step-pattern'' or some rotation thereof, with a generator that ranges from ''g1''¢ to ''g2''¢ or from ''d1''¢ or ''d2''¢. Equal divisions of the ''equave'' that support this scale's step pattern include (''2x+y'')ed''<nowiki><p/q></nowiki>'' (L = 2 and s = 1), (''3x+y'')''ed<nowiki><p/q></nowiki>'' (L = 3 and s = 1), and (''3x+2y'')ed''<nowiki><p/q></nowiki>'' (L = 3 and s = 2)''.''
 
====Examples====
'''5L 7s''', also called '''(hard) diachromatic''' or '''p-chromatic''', is a chromatic scale of the moment-of-symmetry scale 5L 2s, expanded to 5 large steps and 7 small steps, repeating every octave. This scale has a step pattern of LssLsLsLssLs, or some rotation thereof, with a generator that ranges from 700¢ to 720¢, or from 480¢ to 500¢. Equal divisions of the octave that support this scale's step pattern include 17edo, 22edo, and 29edo.
===Mbox template test ===
These would be their own templates.
These would be their own templates.


Line 472: Line 398:
{{Mbox|type=notice|text=This article is '''being created or in the process of being rewritten''', and is '''not yet ready for use'''. You are welcome to help with editing this page.}}
{{Mbox|type=notice|text=This article is '''being created or in the process of being rewritten''', and is '''not yet ready for use'''. You are welcome to help with editing this page.}}


==Math symbols test==
==Math symbols test ==


===Isolated symbols ===
=== Isolated symbols===
<math>T := [ t_1, t_2, ..., t_m ]</math>
<math>T := [ t_1, t_2, ..., t_m ]</math>
<math>S := [ s_1, s_2, ..., s_m ]</math>
<math>S := [ s_1, s_2, ..., s_m ]</math>
<math>P := [ p_1, p_2, ..., p_n ]</math>
<math>P := [ p_1, p_2, ..., p_n ]</math>


===Sample text===
=== Sample text===
Pulled from [[muddle]] page.
Pulled from [[muddle]] page.


Line 491: Line 417:
|+<!-- caption -->Intervals of 2L 5s for each mode
|+<!-- caption -->Intervals of 2L 5s for each mode
|-
|-
!Mode!!UDP!! align="right" |Rotational order!! align="right" |mosunison!!1-mosstep!!2-mosstep!!3-mosstep!!4-mosstep!!5-mosstep!!6-mosstep!!mosoctave
!Mode!!UDP!! align="right" | Rotational order!! align="right" | mosunison!!1-mosstep!!2-mosstep!!3-mosstep!!4-mosstep !!5-mosstep!!6-mosstep!!mosoctave
|-
|-
|LssLsss||6<nowiki>|</nowiki>0|| align="right" |0|| align="right" |0||L||L+s||L+2s||2L+2s||2L+3s||2L+4s||2L+5s
|LssLsss||6<nowiki>|</nowiki>0|| align="right" |0|| align="right" |0||L||L+s||L+2s||2L+2s||2L+3s||2L+4s||2L+5s
|-
|-
|LsssLss||5<nowiki>|</nowiki>1|| align="right" |3|| align="right" |0||L||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|LsssLss ||5<nowiki>|</nowiki>1|| align="right" |3|| align="right" |0||L||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|-
|-
|sLssLss||4<nowiki>|</nowiki>2|| align="right" |6|| align="right" |0||s||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
|sLssLss||4<nowiki>|</nowiki>2|| align="right" |6|| align="right" |0||s||L+s||L+2s||L+3s||2L+3s||2L+4s||2L+5s
Line 505: Line 431:
|ssLsssL||1<nowiki>|</nowiki>5|| align="right" |1|| align="right" |0||s||2s||L+2s||L+3s||L+4s||L+5s||2L+5s
|ssLsssL||1<nowiki>|</nowiki>5|| align="right" |1|| align="right" |0||s||2s||L+2s||L+3s||L+4s||L+5s||2L+5s
|-
|-
|sssLssL||0<nowiki>|</nowiki>6|| align="right" |4|| align="right" |0||s||2s||3s|| L+3s||L+4s||L+5s||2L+5s
|sssLssL||0<nowiki>|</nowiki>6|| align="right" |4|| align="right" |0||s||2s||3s||L+3s||L+4s||L+5s||2L+5s
|}
|}


Line 512: Line 438:
|+Degrees of 2L 5s for each mode
|+Degrees of 2L 5s for each mode
|-
|-
!Mode!! UDP!! align="right" |Rotational order!!0-mosdegree!!1-mosdegree!!2-mosdegree!!3-mosdegree!!4-mosdegree!!5-mosdegree!!6-mosdegree!!7-mosdegree
!Mode!! UDP!! align="right" |Rotational order !! 0-mosdegree !!1-mosdegree!!2-mosdegree!!3-mosdegree!!4-mosdegree!!5-mosdegree!!6-mosdegree!!7-mosdegree
|-
|-
|LssLsss||6<nowiki>|</nowiki>0|| align="right" |0||perfect||major||major||perfect||augmented||major||major||perfect
|LssLsss||6<nowiki>|</nowiki>0|| align="right" |0||perfect||major||major||perfect||augmented||major|| major||perfect
|-
|-
|LsssLss||5<nowiki>|</nowiki>1|| align="right" |3||perfect||major ||major||perfect||perfect||major||major||perfect
|LsssLss||5<nowiki>|</nowiki>1|| align="right" |3||perfect||major||major||perfect||perfect||major||major||perfect
|-
|-
|sLssLss||4<nowiki>|</nowiki>2|| align="right" |6||perfect||minor||major||perfect||perfect||major||major||perfect
|sLssLss||4<nowiki>|</nowiki>2|| align="right" |6||perfect||minor||major||perfect||perfect||major||major||perfect
Line 522: Line 448:
|sLsssLs||3<nowiki>|</nowiki>3|| align="right" |2||perfect||minor||major||perfect||perfect||minor||major||perfect
|sLsssLs||3<nowiki>|</nowiki>3|| align="right" |2||perfect||minor||major||perfect||perfect||minor||major||perfect
|-
|-
|ssLssLs||2<nowiki>|</nowiki>4|| align="right" |5||perfect||minor||minor||perfect||perfect||minor||major||perfect
|ssLssLs||2<nowiki>|</nowiki>4|| align="right" |5||perfect||minor||minor||perfect||perfect||minor|| major||perfect
|-
|-
|ssLsssL||1<nowiki>|</nowiki>5|| align="right" |1||perfect||minor||minor||perfect||perfect||minor||minor||perfect
|ssLsssL||1<nowiki>|</nowiki>5|| align="right" |1||perfect||minor||minor||perfect||perfect||minor|| minor||perfect
|-
|-
|sssLssL||0<nowiki>|</nowiki>6|| align="right" |4||perfect||minor||minor||diminished||perfect||minor||minor||perfect
|sssLssL||0<nowiki>|</nowiki>6|| align="right" |4||perfect||minor||minor||diminished||perfect||minor ||minor||perfect
|}
|}
Note: don't merge cells on a table with sorting.
Note: don't merge cells on a table with sorting.
Line 533: Line 459:
|-
|-
!Mode
!Mode
!Mode name!! UDP!! align="right" |Rotational order!! align="right" |mosunison!!1-mosstep!!2-mosstep!!3-mosstep!!4-mosstep!!5-mosstep!!6-mosstep!!mosoctave
!Mode name!!UDP!! align="right" | Rotational order!! align="right" |mosunison!! 1-mosstep!!2-mosstep!!3-mosstep!!4-mosstep!!5-mosstep!!6-mosstep!!mosoctave
|-
|-
|LssLsss
|LssLsss
|antilocrian||6<nowiki>|</nowiki>0|| align="right" |0|| align="right" |0||L|| L+s||L+2s||2L+2s||2L+3s||2L+4s||2L+5s
|antilocrian||6<nowiki>|</nowiki>0|| align="right" |0|| align="right" |0||L||L+s||L+2s||2L+2s||2L+3s||2L+4s||2L+5s
|-
|-
|LsssLss
|LsssLss
Line 545: Line 471:
|-
|-
|sLsssLs
|sLsssLs
|antidorian||3<nowiki>|</nowiki>3|| align="right" |2|| align="right" |0||s||L+s||L+2s||L+3s||L+4s||2L+4s||2L+5s
|antidorian ||3<nowiki>|</nowiki>3|| align="right" |2|| align="right" |0||s||L+s||L+2s||L+3s||L+4s||2L+4s||2L+5s
|-
|-
|ssLssLs
| ssLssLs
|antimixolydian||2<nowiki>|</nowiki>4|| align="right" |5|| align="right" |0||s||2s||L+2s||L+3s||L+4s||2L+4s||2L+5s
|antimixolydian||2<nowiki>|</nowiki>4|| align="right" |5|| align="right" |0||s||2s||L+2s||L+3s||L+4s||2L+4s ||2L+5s
|-
|-
|ssLsssL
|ssLsssL
Line 554: Line 480:
|-
|-
|sssLssL
|sssLssL
|antilydian||0<nowiki>|</nowiki>6|| align="right" |4|| align="right" |0||s||2s||3s||L+3s||L+4s||L+5s||2L+5s
|antilydian|| 0<nowiki>|</nowiki>6|| align="right" |4|| align="right" |0||s||2s||3s||L+3s||L+4s||L+5s||2L+5s
|}
|}
{| class="wikitable sortable" style="text-align: left;"
{| class="wikitable sortable" style="text-align: left;"
Line 560: Line 486:
|-
|-
!Mode
!Mode
!Mode name!! UDP!! align="right" |Rotational order!!0-mosdegree!!1-mosdegree!!2-mosdegree!!3-mosdegree!!4-mosdegree!!5-mosdegree!!6-mosdegree!!7-mosdegree
!Mode name!!UDP!! align="right" | Rotational order !!0-mosdegree!!1-mosdegree!! 2-mosdegree!!3-mosdegree!!4-mosdegree!!5-mosdegree!!6-mosdegree!!7-mosdegree
|-
|-
|LssLsss
|LssLsss
Line 616: Line 542:
|minor||diminished
|minor||diminished
|perfect
|perfect
|minor
| minor
|minor||perfect
|minor|| perfect
|}
|}


Line 626: Line 552:
!Number of periods
!Number of periods
!Name
!Name
!Prefix
! Prefix
|-
|-
|[[1L 1s]]
|[[1L 1s]]
| 2
|2
|1
|1
|trivial
|trivial
Line 635: Line 561:
|-
|-
|[[1L 1s]]
|[[1L 1s]]
| 2
|2
|1
|1
|monowood
|monowood
Line 641: Line 567:
|-
|-
|[[1L 2s]]
|[[1L 2s]]
| 3
|3
|1
|1
|antrial
|antrial
Line 647: Line 573:
|-
|-
|[[2L 1s]]
|[[2L 1s]]
| 3
|3
|1
|1
|trial
|trial
Line 653: Line 579:
|-
|-
|[[1L 3s]]
|[[1L 3s]]
| 4
|4
|1
|1
|antetric
|antetric
Line 659: Line 585:
|-
|-
|[[2L 2s]]
|[[2L 2s]]
| 4
|4
|2
|2
|biwood
|biwood
Line 665: Line 591:
|-
|-
|[[3L 1s]]
|[[3L 1s]]
| 4
|4
|1
|1
|tetric
|tetric
Line 671: Line 597:
|-
|-
|[[1L 4s]]
|[[1L 4s]]
| 5
|5
|1
|1
|pedal
|pedal
Line 677: Line 603:
|-
|-
|[[2L 3s]]
|[[2L 3s]]
| 5
|5
|1
|1
|pentic
|pentic
Line 683: Line 609:
|-
|-
|[[3L 2s]]
|[[3L 2s]]
| 5
|5
|1
|1
|antipentic
|antipentic
Line 689: Line 615:
|-
|-
|[[4L 1s]]
|[[4L 1s]]
| 5
|5
|1
|1
|manual
|manual
Line 695: Line 621:
|-
|-
|[[1L 5s]]
|[[1L 5s]]
| 6
|6
|1
|1
|antimachinoid
|antimachinoid
Line 701: Line 627:
|-
|-
|[[2L 4s]]
|[[2L 4s]]
| 6
|6
|2
|2
|anticitric
|anticitric
Line 707: Line 633:
|-
|-
|[[3L 3s]]
|[[3L 3s]]
| 6
|6
|3
|3
|triwood
|triwood
Line 713: Line 639:
|-
|-
|[[4L 2s]]
|[[4L 2s]]
| 6
|6
|2
|2
|citric
|citric
Line 731: Line 657:
|-
|-
|[[2L 5s]]
|[[2L 5s]]
| 7
|7
|1
|1
|antidiatonic
| antidiatonic
|pel-
|pel-
|-
|-
|[[3L 4s]]
|[[3L 4s]]
| 7
|7
|1
|1
|mosh
|mosh
Line 743: Line 669:
|-
|-
|[[4L 3s]]
|[[4L 3s]]
| 7
|7
|1
|1
|smitonic
|smitonic
Line 749: Line 675:
|-
|-
|[[5L 2s]]
|[[5L 2s]]
| 7
|7
|1
|1
|diatonic
|diatonic
Line 755: Line 681:
|-
|-
|[[6L 1s]]
|[[6L 1s]]
| 7
|7
|1
| 1
|arch(a)eotonic
|arch(a)eotonic
|arch-
|arch-
|-
|-
|[[1L 7s]]
|[[1L 7s]]
| 8
|8
|1
|1
|antipine
|antipine
Line 779: Line 705:
|-
|-
|[[4L 4s]]
|[[4L 4s]]
| 8
|8
|4
|4
|tetrawood; diminished
|tetrawood; diminished
Line 785: Line 711:
|-
|-
|[[5L 3s]]
|[[5L 3s]]
| 8
|8
|1
|1
|oneirotonic
|oneirotonic
Line 791: Line 717:
|-
|-
|[[6L 2s]]
|[[6L 2s]]
| 8
|8
|2
|2
|ekic
|ekic
Line 797: Line 723:
|-
|-
|[[7L 1s]]
|[[7L 1s]]
| 8
|8
|1
|1
|pine
|pine
Line 803: Line 729:
|-
|-
|[[1L 8s]]
|[[1L 8s]]
| 9
|9
|1
|1
|antisubneutralic
|antisubneutralic
Line 809: Line 735:
|-
|-
|[[2L 7s]]
|[[2L 7s]]
| 9
|9
|1
| 1
|balzano
|balzano
|bal- /bæl/
|bal- /bæl/
|-
|-
|[[3L 6s]]
|[[3L 6s]]
| 9
|9
|3
|3
|tcherepnin
|tcherepnin
Line 821: Line 747:
|-
|-
|[[4L 5s]]
|[[4L 5s]]
| 9
|9
|1
|1
|gramitonic
|gramitonic
Line 827: Line 753:
|-
|-
|[[5L 4s]]
|[[5L 4s]]
| 9
|9
|1
|1
|semiquartal
| semiquartal
|cthon-
|cthon-
|-
|-
|[[6L 3s]]
|[[6L 3s]]
| 9
|9
|3
|3
|hyrulic
|hyrulic
Line 839: Line 765:
|-
|-
|[[7L 2s]]
|[[7L 2s]]
| 9
|9
|1
|1
|superdiatonic
|superdiatonic
Line 845: Line 771:
|-
|-
|[[8L 1s]]
|[[8L 1s]]
| 9
|9
|1
|1
|subneutralic
|subneutralic
Line 851: Line 777:
|-
|-
|[[1L 9s]]
|[[1L 9s]]
| 10
|10
|1
|1
|antisinatonic
| antisinatonic
|asina-
|asina-
|-
|-
|[[2L 8s]]
|[[2L 8s]]
| 10
|10
|2
|2
|jaric
|jaric
Line 863: Line 789:
|-
|-
|[[3L 7s]]
|[[3L 7s]]
| 10
|10
|1
|1
|sephiroid
|sephiroid
|seph-
| seph-
|-
|-
|[[4L 6s]]
|[[4L 6s]]
| 10
|10
|2
|2
|lime
|lime
Line 875: Line 801:
|-
|-
|[[5L 5s]]
|[[5L 5s]]
| 10
|10
|5
|5
|pentawood
|pentawood
|penwd-
| penwd-
|-
|-
|[[6L 4s]]
|[[6L 4s]]
| 10
|10
|2
|2
|lemon
|lemon
Line 887: Line 813:
|-
|-
|[[7L 3s]]
|[[7L 3s]]
| 10
|10
|1
|1
|dicoid /'daɪkɔɪd/
|dicoid /'daɪkɔɪd/
Line 893: Line 819:
|-
|-
|[[8L 2s]]
|[[8L 2s]]
| 10
|10
|2
|2
|taric
|taric
Line 899: Line 825:
|-
|-
|[[9L 1s]]
|[[9L 1s]]
| 10
|10
|1
|1
|sinatonic
|sinatonic
Line 905: Line 831:
|}
|}


==Scale trees of 1L 1s, 1L 2s, and 2L 1s (sandbox)==
== Scale trees of 1L 1s, 1L 2s, and 2L 1s (sandbox)==
{| class="wikitable"
{| class="wikitable"
! colspan="6" |Generator
! colspan="6" |Generator
!Bright gen.
!Bright gen.
! Dark gen.
!Dark gen.
! L
!L
!s
!s
!L/s
!L/s
Line 923: Line 849:
|600.000
|600.000
|600.000
|600.000
|1
| 1
|1
|1
|1.000
|1.000
Line 937: Line 863:
|545.455
|545.455
|6
|6
|5
| 5
| 1.200
| 1.200
| rowspan="3" |2L 5s range (includes 2L 7s and 7L 2s)
| rowspan="3" |2L 5s range (includes 2L 7s and 7L 2s)
Line 951: Line 877:
|5
|5
|4
|4
|1.250
| 1.250
|-
|-
|
|
Line 958: Line 884:
|
|
|
|
|9\16
| 9\16
| 675.000
|675.000
|525.000
|525.000
|9
|9
Line 1,011: Line 937:
|705.882
|705.882
|494.118
|494.118
|10
| 10
|7
|7
|1.429
| 1.429
|-
|-
|
|
Line 1,113: Line 1,039:
|9
|9
|5
|5
|1.800
| 1.800
|-
|-
|
|
Line 1,138: Line 1,064:
|9
|9
|4
|4
| 2.250
|2.250
| rowspan="3" |3L 4s range (includes 3L 7s and 7L 3s)
| rowspan="3" |3L 4s range (includes 3L 7s and 7L 3s)
|-
|-
Line 1,161: Line 1,087:
|847.059
|847.059
|352.941
|352.941
|12
| 12
|5
|5
|2.400
| 2.400
|-
|-
|
|
Line 1,288: Line 1,214:
|9
|9
|2
|2
| 4.500
|4.500
| rowspan="3" |Range of 4L 1s (includes 5L 1s and 1L 5s)
| rowspan="3" |Range of 4L 1s (includes 5L 1s and 1L 5s)
|-
|-
Line 1,309: Line 1,235:
|
|
|6\7
|6\7
|1028.571
| 1028.571
|171.429
|171.429
|6
| 6
|1
| 1
|6.000
|6.000
|-
|-
Line 1,336: Line 1,262:
!1st ancestor
!1st ancestor
!Mos
!Mos
!1st descendants
! 1st descendants
!2nd descendants
!2nd descendants
|-
|-
Line 1,345: Line 1,271:
|xL (2x+y)s
|xL (2x+y)s
|-
|-
|(2x+y)L xs
| (2x+y)L xs
|-
|-
| rowspan="2" |(x+y)L xs
| rowspan="2" |(x+y)L xs