221edo: Difference between revisions

BudjarnLambeth (talk | contribs)
m Added "harmonics in equal" table
Francium (talk | contribs)
No edit summary
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
'''221edo''' is the [[EDO|equal division of the octave]] into 221 parts of 5.4299 [[cent]]s each.
{{EDO intro|221}}
 
== Theory ==
It tempers out 2109375/2097152 (semicomma) and 2541865828329/2500000000000 in the 5-limit; 1029/1024, 19683/19600, and 235298/234375 in the 7-limit, so that it provides the [[optimal patent val]] for the 7-limit [[Gamelismic clan|hemiseven temperament]].  
221et tempers out 2109375/2097152 (semicomma) and 2541865828329/2500000000000 in the 5-limit; 1029/1024, 19683/19600, and 235298/234375 in the 7-limit, so that it provides the [[optimal patent val]] for the 7-limit [[Gamelismic clan|hemiseven temperament]].  


Using the patent val, it tempers out 540/539, 2835/2816, 4375/4356, and 33614/33275 in the 11-limit; 364/363, 625/624, 1701/1690, and 2200/2197 in the 13-limit.  
Using the patent val, it tempers out 540/539, 2835/2816, 4375/4356, and 33614/33275 in the 11-limit; 364/363, 625/624, 1701/1690, and 2200/2197 in the 13-limit.  


Using the 221ef val, it tempers out 385/384, 441/440, 24057/24010, and 43923/43750 in the 11-limit; 351/350, 676/675, 1287/1280, 1573/1568, and 14641/14625 in the 13-limit; 273/272, 561/560, 715/714, 833/832, 2187/2176, and 10648/10625 in the 17-limit, supporting the 17-limit hemiseven and the 11-limit [[Semicomma family|triwell]].
Using the 221ef val, it tempers out 385/384, 441/440, 24057/24010, and 43923/43750 in the 11-limit; 351/350, 676/675, 1287/1280, 1573/1568, and 14641/14625 in the 13-limit; 273/272, 561/560, 715/714, 833/832, 2187/2176, and 10648/10625 in the 17-limit, supporting the 17-limit hemiseven and the 11-limit [[Semicomma family|triwell]].
=== Odd harmonics ===
{{Harmonics in equal|221}}
=== Subsets and supersets ===
221 factors into 13 × 17, with its subset edos [[13edo]] and [[17edo]].
==Regular temperament properties==
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" |Optimal<br>8ve Stretch (¢)
! colspan="2" |Tuning Error
|-
![[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
|-
|2.3
|{{monzo|-350 221}}
|{{val|221 350}}
| 0.4740
| 0.4742
| 8.73
|-
|2.3.5
|{{monzo|-21 3 7}}, {{monzo|-11 26 -13}}
|{{val|221 350 513}}
| 0.4299
| 0.3921
| 7.22
|-
|2.3.5.7
|1029/1024, 19683/19600, 235298/234375
|{{val|221 350 513 620}}
| 0.5282
| 0.3799
| 7.00
|}
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Generator<br>(reduced)
! Cents<br>(reduced)
! Associated<br>ratio
! Temperaments
|-
|1
|50\221
|271.49
|75/64
|[[Orson]]
|-
|1
|84\221
|456.11
|125/96
|[[Qak]]
|-
|1
|89\221
|483.26
|320/243
|[[Hemiseven]]
|-
|1
|93\221
|504.98
|104976/78125
|[[Countermeantone]]
|-
|1
|103\221
|559.28
|864/625
|[[Tritriple]]
|}


{{Harmonics in equal|221}}
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->