User:Moremajorthanmajor/2L 1s (perfect fourth-equivalent): Difference between revisions
No edit summary |
|||
Line 10: | Line 10: | ||
{| class="wikitable" | {| class="wikitable" | ||
|+Cents<ref name=":05">Fractions repeating more than 4 digits written as continued fractions</ref> | |+Cents<ref name=":05">Fractions repeating more than 4 digits written as continued fractions</ref> | ||
! colspan=" | ! colspan="2" |Notation | ||
!Supersoft | !Supersoft | ||
!Soft | !Soft | ||
Line 18: | Line 18: | ||
!Hard | !Hard | ||
!Superhard | !Superhard | ||
|- | |- | ||
!Fourth | !Fourth | ||
!Seventh | !Seventh | ||
!~11ed4/3 | |||
!~8ed4/3 | |||
!~13ed4/3 | |||
!~5ed4/3 | |||
!~12ed4/3 | |||
!~7ed4\3 | |||
!~9ed4/3 | |||
|- | |- | ||
|Do#, Sol# | |Do#, Sol# | ||
|Sol# | |Sol# | ||
|1\11 | |1\11 | ||
46; 6.5 | 46; 6.5 | ||
Line 56: | Line 48: | ||
|Reb, Lab | |Reb, Lab | ||
|Lab | |Lab | ||
|3\11 | |3\11 | ||
138; 3.25 | 138; 3.25 | ||
Line 74: | Line 63: | ||
|'''Re, La''' | |'''Re, La''' | ||
|'''La''' | |'''La''' | ||
|'''4\11''' | |'''4\11''' | ||
'''184; 1.625''' | '''184; 1.625''' | ||
Line 94: | Line 80: | ||
|Re#, La# | |Re#, La# | ||
|La# | |La# | ||
|5\11 | |5\11 | ||
230; 1.3 | 230; 1.3 | ||
Line 114: | Line 97: | ||
|'''Mib, Sib''' | |'''Mib, Sib''' | ||
|'''Sib''' | |'''Sib''' | ||
|'''7\11''' | |'''7\11''' | ||
'''323; 13''' | '''323; 13''' | ||
Line 132: | Line 112: | ||
|Mi, Si | |Mi, Si | ||
|Si | |Si | ||
|8\11 | |8\11 | ||
369; 4.{{Overline|3}} | 369; 4.{{Overline|3}} | ||
Line 152: | Line 129: | ||
|Mi#, Si# | |Mi#, Si# | ||
|Si# | |Si# | ||
|9\11 | |9\11 | ||
415; 2.6 | 415; 2.6 | ||
Line 172: | Line 146: | ||
|Dob, Solb | |Dob, Solb | ||
|Dob | |Dob | ||
|10\11 | |10\11 | ||
461; 1, 1.1{{Overline|6}} | 461; 1, 1.1{{Overline|6}} | ||
Line 190: | Line 161: | ||
!Do, Sol | !Do, Sol | ||
!Do | !Do | ||
!'''11\11''' | !'''11\11''' | ||
'''507; 1.{{Overline|4}}''' | '''507; 1.{{Overline|4}}''' | ||
Line 210: | Line 178: | ||
|Do#, Sol# | |Do#, Sol# | ||
|Do# | |Do# | ||
|12\11 | |12\11 | ||
553; 1.{{Overline|18}} | 553; 1.{{Overline|18}} | ||
Line 230: | Line 195: | ||
|Reb, Lab | |Reb, Lab | ||
|Reb | |Reb | ||
|14\11 | |14\11 | ||
646; 6.5 | 646; 6.5 | ||
Line 248: | Line 210: | ||
|'''Re, La''' | |'''Re, La''' | ||
|'''Re''' | |'''Re''' | ||
|'''15\11''' | |'''15\11''' | ||
'''692; 3.25''' | '''692; 3.25''' | ||
Line 268: | Line 227: | ||
|Re#, La# | |Re#, La# | ||
|Re# | |Re# | ||
|16\11 | |16\11 | ||
738; 2.1{{Overline|6}} | 738; 2.1{{Overline|6}} | ||
Line 288: | Line 244: | ||
|'''Mib, Sib''' | |'''Mib, Sib''' | ||
|'''Mib''' | |'''Mib''' | ||
|'''18\11''' | |'''18\11''' | ||
'''830; 1.3''' | '''830; 1.3''' | ||
Line 306: | Line 259: | ||
|Mi, Si | |Mi, Si | ||
|Mi | |Mi | ||
|19\11 | |19\11 | ||
876; 1.08{{Overline|3}} | 876; 1.08{{Overline|3}} | ||
Line 326: | Line 276: | ||
|Mi#, Si# | |Mi#, Si# | ||
|Mi# | |Mi# | ||
|20\11 | |||
|20\11 | |||
923: 13 | 923: 13 | ||
| rowspan="2" |15\8 | | rowspan="2" |15\8 | ||
Line 346: | Line 293: | ||
|Dob, Solb | |Dob, Solb | ||
|Solb | |Solb | ||
|21\11 | |21\11 | ||
969; 4.{{Overline|3}} | 969; 4.{{Overline|3}} | ||
Line 364: | Line 308: | ||
!Do, Sol | !Do, Sol | ||
!Sol | !Sol | ||
!22\11 | !22\11 | ||
1015; 2.6 | 1015; 2.6 | ||
Line 381: | Line 322: | ||
!18\9 | !18\9 | ||
981.{{Overline|81}} | 981.{{Overline|81}} | ||
|} | |||
{| class="wikitable" | |||
! colspan="3" |Notation | |||
!Supersoft | |||
!Soft | |||
!Semisoft | |||
!Basic | |||
!Semihard | |||
!Hard | |||
!Superhard | |||
|- | |- | ||
| | ! rowspan="2" |Mahur | ||
| | ! rowspan="2" |Bijou | ||
| | ! rowspan="2" |Hyperionic | ||
| | ! rowspan="2" |~11ed4/3 | ||
| | ! rowspan="2" |~8ed4/3 | ||
| | ! rowspan="2" |~13ed4/3 | ||
! rowspan="2" |~5ed4/3 | |||
! rowspan="2" |~12ed4/3 | |||
! rowspan="2" |~7ed4\3 | |||
! rowspan="2" |~9ed4/3 | |||
|- | |||
| | |||
|- | |- | ||
| | |G# | ||
| | |0#, D# | ||
| | |1# | ||
| | |1\11 | ||
46; 6.5 | |||
| | |1\8 | ||
63; 6.{{Overline|3}} | |||
| | |2\13 | ||
77; 2, 2.6 | |||
| | | rowspan="2" |1\5 | ||
100 | |||
| | |3\12 | ||
124; 7.25 | |||
| | |2\7 | ||
141; 5.{{Overline|6}} | |||
| | |3\9 | ||
163.{{Overline|63}} | |||
|- | |- | ||
| | |Jf, Af | ||
| | |1b, 1d | ||
|''' | |2f | ||
|''' | |3\11 | ||
|''' | 138; 3.25 | ||
|''' | |2\8 | ||
''' | 126; 3.1{{Overline|6}} | ||
|''' | |3\13 | ||
''' | 116; 7.75 | ||
|''' | |2\12 | ||
''' | 82; 1.3{{Overline|18}} | ||
|''' | |1\7 | ||
''' | 70; 1.7 | ||
|''' | |1\9 | ||
''' | 54.{{Overline|54}} | ||
|''' | |- | ||
''' | |'''J, A''' | ||
|''' | |'''1''' | ||
''' | |'''2''' | ||
|'''4\11''' | |||
'''184; 1.625''' | |||
|'''3\8''' | |||
'''189; 2.{{Overline|1}}''' | |||
|'''5\13''' | |||
'''193; 1, 1, 4.{{Overline|6}}''' | |||
|'''2\5''' | |||
'''200''' | |||
|'''5\12''' | |||
'''206; 1, 8.{{Overline|6}}''' | |||
|'''3\7''' | |||
'''211; 1, 3.25''' | |||
|'''4\9''' | |||
'''218.{{Overline|18}}''' | |||
|- | |- | ||
| | |J#, A# | ||
| | |1# | ||
| | |2# | ||
| | |5\11 | ||
230; 1.3 | |||
|4\8 | |||
252; 1.58{{Overline|3}} | |||
| | |7\13 | ||
270; 1.0{{Overline|3}} | |||
| | | rowspan="2" |'''3\5''' | ||
'''300''' | |||
| rowspan="2" |''' | |8\12 | ||
''' | 331; 29 | ||
| | |5\7 | ||
352; 1.0625 | |||
| | |7\9 | ||
381.{{Overline|81}} | |||
| | |||
|- | |- | ||
|''' | |'''Af, Bf''' | ||
|''' | |'''2b, 2d''' | ||
|'''3f''' | |||
|'''7\11''' | |||
|''' | '''323; 13''' | ||
|''' | |'''5\8''' | ||
''' | '''315; 1.2{{Overline|6}}''' | ||
|''' | |'''8\13''' | ||
''' | '''309; 1, 2.1''' | ||
|''' | |'''7\12''' | ||
''' | '''289; 1, 1.9''' | ||
|''' | |'''4\7''' | ||
''' | '''282; 2.8{{Overline|3}}''' | ||
|''' | |'''5\9''' | ||
''' | '''272.{{Overline|72}}''' | ||
|''' | |||
''' | |||
|- | |- | ||
| | |A, B | ||
| | |2 | ||
| | |3 | ||
|8 | |8\11 | ||
369; 4.{{Overline|3}} | |||
|6\8 | |||
378; 1.0{{Overline|5}} | |||
| | |10\13 | ||
387; 10.{{Overline|3}} | |||
| | |4\5 | ||
400 | |||
| | |10\12 | ||
413; 1, 3.8{{Overline|3}} | |||
| | |6\7 | ||
423; 1.{{Overline|8}} | |||
| | |8\9 | ||
436.{{Overline|36}} | |||
| | |||
|- | |- | ||
| | |A#, B# | ||
| | |2# | ||
| | |3# | ||
|9\11 | |||
|9 | 415; 2.6 | ||
| rowspan="2" |7\8 | |||
442; 9.5 | |||
| rowspan="2" | | |12\13 | ||
464; 1.9375 | |||
| | |5\5 | ||
500 | |||
| | |13\12 | ||
537; 14.5 | |||
| | |8\7 | ||
564; 1.41{{Overline|6}} | |||
| | |11\9 | ||
600 | |||
|- | |- | ||
| | |Bb, Cf | ||
| | |3b, 3d | ||
|4f | |||
|10\11 | |||
| | 461; 1, 1.1{{Overline|6}} | ||
| | |11\13 | ||
425; 1.24 | |||
| | |4\5 | ||
400 | |||
| | |9\12 | ||
372; 2.41{{Overline|6}} | |||
| | |5\7 | ||
352; 1.0625 | |||
| | |6\9 | ||
327.{{Overline|27}} | |||
| | |||
|- | |- | ||
! | !B, C | ||
! | !3 | ||
! | !4 | ||
!''' | !'''11\11''' | ||
'''507; 1.{{Overline|4}}''' | |||
!'''8\8''' | |||
'''505; 3.8''' | |||
!'''13\13''' | |||
'''503; 4, 2.{{Overline|3}}''' | |||
! | !'''5\5''' | ||
'''500''' | |||
! | !'''12\12''' | ||
'''496; 1.8125''' | |||
! | !'''7\7''' | ||
'''494; 8.5''' | |||
! | !'''9\9''' | ||
'''490.{{Overline|90}}''' | |||
! | |||
|- | |- | ||
| | |B#, C# | ||
| | |3# | ||
| | |4# | ||
|9 | |12\11 | ||
| | 553; 1.{{Overline|18}} | ||
| | |9\8 | ||
568; 2.375 | |||
| | |15\13 | ||
580; 1.55 | |||
| | | rowspan="2" |6\5 | ||
600 | |||
|15\12 | |||
620; 1.45 | |||
| | |9\7 | ||
635; 3.4 | |||
| | |12\9 | ||
654.{{Overline|54}} | |||
| | |- | ||
|Cf, Qf | |||
|4b, 4d | |||
|5f | |||
|14\11 | |||
646; 6.5 | |||
|10\8 | |||
631; 1.{{Overline|72}} | |||
|16\13 | |||
619; 2.{{Overline|81}} | |||
|14\12 | |||
579; 3.{{Overline|2}} | |||
|8\7 | |||
564; 1.41{{Overline|6}} | |||
|10\9 | |||
545.{{Overline|45}} | |||
|- | |- | ||
| | |'''C, Q''' | ||
| | |'''4''' | ||
| | |'''5''' | ||
| | |'''15\11''' | ||
'''692; 3.25''' | |||
| | |'''11\8''' | ||
'''694; 1, 2.8''' | |||
| | |'''18\13''' | ||
'''696; 1.291{{Overline|6}}''' | |||
| | |'''7\5''' | ||
'''700''' | |||
| | |'''17\12''' | ||
'''703; 2, 2.1{{Overline|6}}''' | |||
| | |'''10\7''' | ||
'''705; 1.1{{Overline|3}}''' | |||
| | |'''13\9''' | ||
'''709.{{Overline|09}}''' | |||
|- | |- | ||
|''' | |C#, Q# | ||
|4# | |||
|''' | |5# | ||
|''' | |16\11 | ||
|''' | 738; 2.1{{Overline|6}} | ||
|''' | |12\8 | ||
''' | 757; 1, 8.5 | ||
|''' | |20\13 | ||
''' | 774; 5.1{{Overline|6}} | ||
|''' | | rowspan="2" |'''8\5''' | ||
''' | '''800''' | ||
| | |20\12 | ||
827; 1, 1.41{{Overline|6}} | |||
|12\7 | |||
|''' | 847; 17 | ||
''' | |16\9 | ||
|''' | 872.{{Overline|72}} | ||
''' | |- | ||
|''' | |'''Qf, Df''' | ||
''' | |'''5b, 5d''' | ||
|'''6f''' | |||
|'''18\11''' | |||
'''830; 1.3''' | |||
|'''13\8''' | |||
'''821; 19''' | |||
|'''21\13''' | |||
'''812; 1, 9.{{Overline|3}}''' | |||
|'''19\12''' | |||
'''786; 4.8{{Overline|3}}''' | |||
|'''11\7''' | |||
'''776; 2.125''' | |||
|'''14\9''' | |||
'''763.{{Overline|63}}''' | |||
|- | |- | ||
| | |Q, D | ||
| | |5 | ||
| | |6 | ||
| | |19\11 | ||
876; 1.08{{Overline|3}} | |||
|14\8 | |||
884; 4.75 | |||
| | |23\13 | ||
890; 3.1 | |||
| | |9\5 | ||
900 | |||
| | |22\12 | ||
910; 2.9 | |||
| | |13\7 | ||
917; 1.{{Overline|54}} | |||
| | |17\9 | ||
927.{{Overline|27}} | |||
| | |||
|- | |- | ||
| | |Q#, D# | ||
| | |5# | ||
| | |6# | ||
|20\11 | |||
923: 13 | |||
| | | rowspan="2" |15\8 | ||
947; 2, 1.4 | |||
| | |25\13 | ||
967; 1, 2.875 | |||
|10\5 | |||
| | 1000 | ||
|25\12 | |||
| | 1034; 2, 14 | ||
|15\7 | |||
| | 1058; 1, 4.{{Overline|6}} | ||
|20\9 | |||
| | 1090.{{Overline|90}} | ||
|- | |- | ||
| | |Df, Sf | ||
| | |6b, 6d | ||
|7f | |||
|21\11 | |||
| | 969; 4.{{Overline|3}} | ||
| | |24\13 | ||
929; 31 | |||
| | |9\5 | ||
900 | |||
| | |21\12 | ||
868; 1, 28 | |||
| | |11\7 | ||
776; 2.125 | |||
| | |15\9 | ||
818.{{Overline|18}} | |||
| | |||
| | |||
|- | |- | ||
!D, S | |||
!6 | |||
!7 | |||
!22\11 | |||
1015; 2.6 | |||
!16\8 | |||
1010; 1.9 | |||
!26\13 | |||
1006; 2, 4.{{Overline|6}} | |||
!10\5 | |||
1000 | |||
!24\12 | |||
993; 9.{{Overline|6}} | |||
!14\7 | |||
988; 4.25 | |||
!18\9 | |||
981.{{Overline|81}} | |||
|- | |- | ||
| | |D#, S# | ||
| | |6# | ||
| | |7# | ||
| | |23\11 | ||
| | 1061; 1, 1.1{{Overline|6}} | ||
| | |17\8 | ||
1073; 1, 2.1{{Overline|6}} | |||
| | |28\13 | ||
1083; 1.{{Overline|148}} | |||
| | | rowspan="2" |11\5 | ||
1100 | |||
| | |27\12 | ||
1117; 4, 7 | |||
| | |16\7 | ||
1129; 2, 2.{{Overline|3}} | |||
| | |24\9 | ||
1309.{{Overline|09}} | |||
|- | |- | ||
|Ef | |||
|7b, 7d | |||
|8f | |||
|25\11 | |||
1153; 1.{{Overline|18}} | |||
|18\8 | |||
1136; 1.1875 | |||
|29\13 | |||
1122; 1.7{{Overline|2}} | |||
|26\12 | |||
1075; 1.16 | |||
|15\7 | |||
1058; 1, 4.{{Overline|6}} | |||
|19\9 | |||
1036.{{Overline|36}} | |||
|- | |- | ||
| | |'''E''' | ||
| | |'''7''' | ||
| | |'''8''' | ||
|'''26\11''' | |||
'''1200''' | |||
| | |'''19\8''' | ||
'''1200''' | |||
| | |'''31\13''' | ||
'''1200''' | |||
| | |'''12\5''' | ||
'''1200''' | |||
| | |'''29\12''' | ||
'''1200''' | |||
| | |'''17\7''' | ||
'''1200''' | |||
| | |'''22\9''' | ||
'''1200''' | |||
| | |||
|- | |- | ||
| | |E# | ||
| | |7# | ||
| | |8# | ||
| | |27\11 | ||
| | 1246; 6,5 | ||
|20\8 | |||
1263; 6.{{Overline|3}} | |||
| | |33\13 | ||
1277; 2, 2.6 | |||
| | | rowspan="2" |'''13\5''' | ||
'''1300''' | |||
| | |32\12 | ||
1324; 7.25 | |||
| | |19\7 | ||
1341; 5.{{Overline|6}} | |||
| | |25\9 | ||
1363.{{Overline|63}} | |||
|- | |- | ||
|''' | |'''Ff''' | ||
|''' | |'''8b, Fd''' | ||
|'''9f''' | |||
|'''29\11''' | |||
|''' | '''1338; 3.25''' | ||
|''' | |'''21\8''' | ||
''' | '''1326; 3.16̄''' | ||
|''' | |'''34\13''' | ||
''' | '''1316; 7.75''' | ||
|''' | |'''31\12''' | ||
''' | '''1282; 1.3{{Overline|18}}''' | ||
|''' | |'''18\7''' | ||
'''1270; 1.7''' | |||
|'''23\9''' | |||
''' | '''1254.{{Overline|54}}''' | ||
|''' | |||
''' | |||
|''' | |||
''' | |||
|- | |- | ||
| | |F | ||
| | |8, F | ||
|9 | |||
| | |30\11 | ||
1384; 1.625 | |||
| | |22\8 | ||
1389; 2.1̄ | |||
| | |36\13 | ||
1393; 1, 1, 4.{{Overline|6}} | |||
| | |14\5 | ||
1400 | |||
| | |34\12 | ||
1406; 1, 8.{{Overline|6}} | |||
| | |20\7 | ||
1411; 1, 3.25 | |||
| | |26\9 | ||
1418.{{Overline|18}} | |||
| | |||
|- | |- | ||
| | |F# | ||
| | |8#, F# | ||
|9# | |||
| | |31\11 | ||
| | 1430; 1.3 | ||
| rowspan="2" |23\8 | |||
1452; 1.58{{Overline|3}} | |||
| | |38\13 | ||
1470; 1.0{{Overline|3}} | |||
| | |15\5 | ||
1500 | |||
| | |37\12 | ||
1531; 29 | |||
| | |22\7 | ||
1552; 1.0625 | |||
| | |29\9 | ||
1581.{{Overline|81}} | |||
|- | |- | ||
| | |Gf | ||
| | |9b, Gd | ||
| | |Af | ||
| | |32\11 | ||
| | 1476; 1.08{{Overline|3}} | ||
| | |37\13 | ||
1432: 3.875 | |||
| | |14\5 | ||
1400 | |||
| | |33\12 | ||
1365; 1.9{{Overline|3}} | |||
| | |19\7 | ||
1341; 5.{{Overline|3}} | |||
|24\9 | |||
1309.{{Overline|09}} | |||
|- | |||
!G | |||
!'''9, G''' | |||
!A | |||
!33\11 | |||
1523; 13 | |||
!24\8 | |||
1515; 1.2{{Overline|6}} | |||
!39\13 | |||
1509; 1, 2.1 | |||
!15\5 | |||
1500 | |||
!36\12 | |||
1489; 1, 1.9 | |||
!21\7 | |||
1482; 2.8{{Overline|3}} | |||
!27\9 | |||
1472.{{Overline|72}} | |||
|- | |- | ||
| | |G# | ||
| | |9#, G# | ||
| | |A# | ||
| | |34\11 | ||
| | 1569; 4.{{Overline|3}} | ||
| | |25\8 | ||
1578; 1.05̄ | |||
| | |41\13 | ||
1587; 10.{{Overline|3}} | |||
| | | rowspan="2" |16\5 | ||
1600 | |||
| | |39\12 | ||
1613; 1, 3.8{{Overline|3}} | |||
| | |23\7 | ||
1623; 1.{{Overline|8}} | |||
| | |30\9 | ||
1636.{{Overline|36}} | |||
| | |||
|- | |- | ||
| | |Jf, Af | ||
| | |Xb, Ad | ||
|Bf | |||
|36\11 | |||
| | 1661; 1, 1.1{{Overline|6}} | ||
| | |26\8 | ||
1642; 9.5 | |||
|42\13 | |||
1625; 1.24 | |||
| | |38\12 | ||
1572; 29 | |||
| | |22\7 | ||
1552; 1.0625 | |||
| | |28\9 | ||
1527.{{Overline|27}} | |||
| | |||
|- | |- | ||
|'''J, A''' | |||
|'''X, A''' | |||
|'''B''' | |||
|'''37\11''' | |||
'''1707; 1.{{Overline|4}}''' | |||
|'''27\8''' | |||
'''1705; 3.8''' | |||
|'''44\13''' | |||
'''1703; 4, 2.3̄''' | |||
|'''17\5''' | |||
'''1700''' | |||
|'''41\12''' | |||
'''1696; 1.8125''' | |||
|'''24\7''' | |||
'''1694; 8.5''' | |||
|'''31\9''' | |||
'''1690.{{Overline|90}}''' | |||
|- | |- | ||
| | |J#, A# | ||
| | |X#, A# | ||
| | |B# | ||
| | |38\11 | ||
| | 1753; 1.{{Overline|18}} | ||
| | |28\8 | ||
| | 1768; 2.375 | ||
| | |46\13 | ||
1780; 1.55 | |||
| rowspan="2" |'''18\5''' | |||
'''1800''' | |||
|44\12 | |||
1820; 1.45 | |||
|26\7 | |||
1835; 3,4 | |||
|34\9 | |||
1854.{{Overline|54}} | |||
|- | |- | ||
| | |'''Af, Bf''' | ||
| | |'''Eb, Bd''' | ||
| | |'''Cf''' | ||
| | |'''40\11''' | ||
| | '''1846; 6.5''' | ||
| | |'''29\8''' | ||
| | |||
'''1831; 1.{{Overline|72}}''' | |||
| | |'''47\13''' | ||
| | '''1819; 2.{{Overline|81}}''' | ||
| | |'''43\12''' | ||
| | '''1779; 3.{{Overline|2}}''' | ||
| | |'''25\7''' | ||
'''1764; 1, 3.25''' | |||
|'''32\9''' | |||
'''1745.{{Overline|45}}''' | |||
|- | |- | ||
| | |A, B | ||
| | |E, B | ||
|3 | |C | ||
| | |41\11 | ||
| | 1892; 3.25 | ||
| | |30\8 | ||
| | 1894; 1, 2.8 | ||
| | |49\13 | ||
1896; 1.291{{Overline|6}} | |||
|19\5 | |||
1900 | |||
|46\12 | |||
1903; 2, 2.1{{Overline|6}} | |||
|27\7 | |||
1905; 1, 7.5 | |||
|35\9 | |||
1909.{{Overline|09}} | |||
|- | |- | ||
| | |A#, B# | ||
| | |E#, B# | ||
| | |C# | ||
|42\11 | |||
1938; 2.1{{Overline|6}} | |||
| | | rowspan="2" |31\8 | ||
|} | 1957; 1, 8.5 | ||
|51\13 | |||
1974; 5.1{{Overline|6}} | |||
|20\5 | |||
| | 2000 | ||
|49\12 | |||
| | 2027; 1, 1.41{{Overline|6}} | ||
|29\7 | |||
| | 2047; 17 | ||
|38\9 | |||
| | 2072.{{Overline|72}} | ||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |Bb, Cf | ||
| | |0b, Dd | ||
| | |Df | ||
| | |43\15 | ||
| | 1984; 1.625 | ||
| | |50\13 | ||
| | 1935; 2.0{{Overline|6}} | ||
| | |19\5 | ||
| | 1900 | ||
| | |45\12 | ||
| | 1862; 14.5 | ||
|26\7 | |||
1835; 3,4 | |||
{| | |33\9 | ||
! | 1800 | ||
! | |- | ||
!B, C | |||
! | !0, D | ||
!D | |||
!44\11 | |||
2030; 1.3 | |||
!32\8 | |||
2021; 19 | |||
!52\13 | |||
2012; 1, 9.{{Overline|3}} | |||
!20\5 | |||
2000 | |||
!48\12 | |||
1986; 4.8{{Overline|3}} | |||
!28\7 | |||
1976; 2.125 | |||
!36\9 | |||
1963.{{Overline|63}} | |||
|- | |- | ||
|B#, C# | |||
|0#, D# | |||
|D# | |||
|45\11 | |||
2076; 1.08{{Overline|3}} | |||
|33\8 | |||
2084; 4.75 | |||
|54\13 | |||
2090; 3.1 | |||
| rowspan="2" |21\5 | |||
2100 | |||
|51\12 | |||
2110; 2.9 | |||
|30\7 | |||
2117; 1.{{Overline|54}} | |||
|39\9 | |||
2127.{{Overline|27}} | |||
|- | |- | ||
| | |Cf, Qf | ||
| | |1b, 1d | ||
| | |Ef | ||
| | |47\11 | ||
| | 2169; 4.{{Overline|3}} | ||
| | |34\8 | ||
2147; 2, 1.4 | |||
| | |55\13 | ||
2129; 31 | |||
| | |50\12 | ||
| | 2068; 1, 28 | ||
|29\7 | |||
2047; 17 | |||
|37\9 | |||
2018.{{Overline|18}} | |||
|- | |- | ||
| | |'''C, Q''' | ||
| | |'''1''' | ||
| | |'''E''' | ||
| | |'''48\11''' | ||
'''2215; 2.6''' | |||
| | |'''35\8''' | ||
'''2210; 1.9''' | |||
|'''57\13''' | |||
'''2206; 2, 4.{{Overline|6}}''' | |||
|'''22\5''' | |||
'''2200''' | |||
|'''53\12''' | |||
'''2193; 9.{{Overline|6}}''' | |||
|'''31\7''' | |||
'''2188; 4.25''' | |||
|'''40\9''' | |||
'''2181.{{Overline|81}}''' | |||
|- | |||
|C#, Q# | |||
|1# | |||
|E# | |||
|49\11 | |||
2261; 1, 1.1{{Overline|6}} | |||
|36\8 | |||
2273; 1, 2.1{{Overline|6}} | |||
|59\13 | |||
2083; 1.{{Overline|148}} | |||
| rowspan="2" |'''23\5''' | |||
'''2300''' | |||
|56\12 | |||
{| | 2327; 4, 7 | ||
|33\7 | |||
2329; 2, 2.{{Overline|3}} | |||
|43\9 | |||
2345.{{Overline|45}} | |||
|- | |- | ||
| | |'''Qf, Df''' | ||
| | |'''2b, 2d''' | ||
| | |'''Ff''' | ||
| | |'''51\11''' | ||
|1 | '''2353; 1.{{Overline|18}}''' | ||
|1 | |'''37\8''' | ||
|1. | '''2336; 1.1875''' | ||
| | |'''61\13''' | ||
'''2322; 1.7{{Overline|2}}''' | |||
|'''55\12''' | |||
'''2275; 1.16''' | |||
|'''32\7''' | |||
'''2258; 1, 4.{{Overline|6}}''' | |||
|'''41\9''' | |||
'''2236.{{Overline|36}}''' | |||
|- | |- | ||
| | |Q, D | ||
| | |2 | ||
| | |F | ||
| | |52\11 | ||
| | 2400 | ||
|5 | |38\8 | ||
| | 2400 | ||
| | |62\13 | ||
2400 | |||
|24\5 | |||
2400 | |||
|58\12 | |||
2400 | |||
|34\7 | |||
2400 | |||
|44\9 | |||
2400 | |||
|- | |- | ||
| | |Q#, D# | ||
|11\ | |2# | ||
| | |F# | ||
| | |53\11 | ||
| | 2446; 6.5 | ||
| rowspan="2" |39\8 | |||
2463; 6.{{Overline|3}} | |||
| | |64\13 | ||
2477; 2, 2.6 | |||
|25\5 | |||
2500 | |||
|61\12 | |||
2524; 7.25 | |||
|36\7 | |||
2541; 5.{{Overline|6}} | |||
|47/9 | |||
2563.{{Overline|63}} | |||
|- | |- | ||
| | |Df, Sf | ||
| | |3b, 3d | ||
| | |1f | ||
| | |54\11 | ||
|5 | 2492; 3.25 | ||
| | |63\13 | ||
2438; 1.1{{Overline|36}} | |||
|24\5 | |||
| | 2400 | ||
|57\12 | |||
2358; 1.61̄ | |||
|33\7 | |||
2329; 2, 2.{{Overline|3}} | |||
| | |42\9 | ||
| | 2390.{{Overline|90}} | ||
| | |||
|- | |- | ||
| | !D, S | ||
| | !3 | ||
!1 | |||
!55\11 | |||
2538; 2.1{{Overline|6}} | |||
| | !40\8 | ||
| | 2526; 3.1{{Overline|6}} | ||
| | !65\13 | ||
2516; 7.75 | |||
!25\5 | |||
2500 | |||
!60\12 | |||
2482; '''1.3{{Overline|18}}''' | |||
!35\7 | |||
2470; 1.7 | |||
!45\9 | |||
2454.{{Overline|54}} | |||
|} | |||
==Intervals== | |||
{| class="wikitable" | |||
!Generators | |||
!Fourth notation | |||
!Interval category name | |||
!Generators | |||
!Notation of 4/3 inverse | |||
!Interval category name | |||
|- | |- | ||
| | | colspan="6" |The 3-note MOS has the following intervals (from some root): | ||
|3 | |||
|- | |- | ||
| | |0 | ||
| | |Do, Sol | ||
| | |perfect unison | ||
| | |0 | ||
|Do, Sol | |||
|perfect fourth | |||
| | |||
| | |||
|- | |- | ||
| | |1 | ||
| | |Mib, Sib | ||
| | |diminished third | ||
| | | -1 | ||
| | |Re, La | ||
|perfect second | |||
| | |||
|- | |- | ||
| | |2 | ||
| | |Reb, Lab | ||
| | |diminished second | ||
| | | -2 | ||
|Mi, Si | |||
|perfect third | |||
| | |||
| | |||
|- | |- | ||
| | | colspan="6" |The chromatic 5-note MOS also has the following intervals (from some root): | ||
| | |||
|- | |- | ||
| | |3 | ||
| | |Dob, Solb | ||
|diminished fourth | |||
| -3 | |||
| | |Do#, Sol# | ||
| | |augmented unison (chroma) | ||
| | |||
| | |||
|- | |- | ||
| | |4 | ||
| | |Mibb, Sibb | ||
| | |doubly diminished third | ||
| | | -4 | ||
| | |Re#, La# | ||
| | |augmented second | ||
| | |} | ||
| | ==Genchain== | ||
| | The generator chain for this scale is as follows: | ||
| | {| class="wikitable" | ||
| | |Mibb | ||
| | Sibb | ||
| | |Dob | ||
| | Solb | ||
| | |Reb | ||
| | Lab | ||
| | |Mib | ||
Sib | |||
|Do | |||
Sol | |||
|Re | |||
La | |||
|Mi | |||
Si | |||
|Do# | |||
Sol# | |||
|Re# | |||
La# | |||
|Mi# | |||
Si# | |||
|- | |- | ||
| | |dd3 | ||
| | |d4 | ||
| | |d2 | ||
| | |d3 | ||
| | |P1 | ||
| | |P2 | ||
| | |P3 | ||
| | |A1 | ||
|A2 | |||
|A3 | |||
|} | |||
==Modes== | |||
The mode names are based on the species of fourth: | |||
{| class="wikitable" | |||
!Mode | |||
!Scale | |||
![[Modal UDP Notation|UDP]] | |||
! colspan="2" |Interval type | |||
|- | |||
!name | |||
!pattern | |||
!notation | |||
!2nd | |||
!3rd | |||
|- | |- | ||
| | |Major | ||
| | |LLs | ||
| | |<nowiki>2|0</nowiki> | ||
|P | |||
|P | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |Minor | ||
| | |LsL | ||
| | |<nowiki>1|1</nowiki> | ||
| | |P | ||
| | |d | ||
| | |||
|- | |- | ||
|Phrygian | |||
|LsLL | |||
|<nowiki>0|2</nowiki> | |||
|d | |||
|d | |||
|} | |||
==Temperaments== | |||
The most basic rank-2 temperament interpretation of diatonic is '''Mahuric'''. The name "Mahuric" comes from the “Mahur” scale in Persian and Arabic music. The major triad is spelled <code>root-2g-(p+g)</code> (p = 4/3, g = the whole tone) and approximates 4:5:6 in pental interpretations or 14:18:21 in septimal ones. Basic ~5ed4/3 fits both interpretations. | |||
==='''Mahuric-Meantone'''=== | |||
[[Subgroup]]: 4/3.5/4.3/2 | |||
[[Comma]] list: [[81/80]] | |||
[[POL2]] generator: ~9/8 = 193.6725¢ | |||
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}] | |||
[[Optimal ET sequence]]: ~(5ed4/3, 8ed4/3, 13ed4/3) | |||
==='''Mahuric-Superpyth'''=== | |||
[[Subgroup]]: 4/3.9/7.3/2 | |||
[[Comma]] list: [[64/63]] | |||
[[POL2]] generator: ~8/7 = 216.7325¢ | |||
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}] | |||
[[Optimal ET sequence]]: ~(5ed4/3, 7ed4/3, 9ed4/3, 11ed4/3) | |||
====Scale tree==== | |||
The spectrum looks like this: | |||
{| class="wikitable" | |||
! colspan="3" |Generator | |||
(bright) | |||
!Cents<ref name=":05" /> | |||
!L | |||
!s | |||
!L/s | |||
!Comments | |||
|- | |||
|1\3 | |||
| | |||
| | | | ||
| | |171; 2.{{Overline|3}} | ||
|1 | |||
|1 | |||
|1.000 | |||
|Equalised | |||
|1 | |||
| | |||
|1. | |||
| | |||
|- | |- | ||
|6\17 | |||
| | | | ||
| | | | ||
| | |180 | ||
| | |6 | ||
|5 | |||
| | |1.200 | ||
|1. | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |11\31 | ||
| | | | ||
| | |180; 1.21{{Overline|6}} | ||
| | |11 | ||
| | |9 | ||
|1. | |1.222 | ||
| | | | ||
|- | |- | ||
|5\14 | |||
| | | | ||
| | | | ||
| | |181.{{Overline|81}} | ||
|5 | |5 | ||
|1. | |4 | ||
|1.250 | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |14\39 | ||
| | | | ||
| | |182; 1, 1.5 | ||
|14 | |||
|11 | |11 | ||
|1.273 | |||
|1. | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |9\25 | ||
| | | | ||
| | |183; 19.{{Overline|6}} | ||
| | |9 | ||
|7 | |7 | ||
|1. | |1.286 | ||
| | | | ||
|- | |- | ||
|4\11 | |||
| | | | ||
| | | | ||
| | |184; 1.625 | ||
| | |4 | ||
| | |3 | ||
|1. | |1.333 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |15\41 | ||
| | | | ||
| | |185; 1.7{{Overline|63}} | ||
| | |15 | ||
| | |11 | ||
|1. | |1.364 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |11\30 | ||
| | | | ||
| | |185, 1, 10.8{{Overline|3}} | ||
| | |11 | ||
| | |8 | ||
|1. | |1.375 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |7\19 | ||
| | | | ||
| | |186.{{Overline|6}} | ||
| | |7 | ||
| | |5 | ||
|1. | |1.400 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |10\27 | ||
| | | | ||
| | |187.5 | ||
| | |10 | ||
| | |7 | ||
|1. | |1.429 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |13\35 | ||
| | | | ||
| | |187; 1, 19.75 | ||
|13 | |13 | ||
|1. | |9 | ||
|1.444 | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |16\43 | ||
| | | | ||
| | |188; 4.25 | ||
| | |16 | ||
| | |11 | ||
|1. | |1.4545 | ||
| | | | ||
|- | |- | ||
|3\8 | |||
| | | | ||
| | | | ||
|189; 2.{{Overline|1}} | |||
|3 | |||
|2 | |||
|1.500 | |||
|Mahuric-Meantone starts here | |||
|- | |- | ||
| | | | ||
| | |14\37 | ||
| | | | ||
| | |190.{{Overline|90}} | ||
| | |14 | ||
| | |9 | ||
|1. | |1.556 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |11\29 | ||
| | | | ||
| | |191; 3, 2.{{Overline|3}} | ||
| | |11 | ||
| | |7 | ||
|1. | |1.571 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |8\21 | ||
| | | | ||
| | |192 | ||
| | |8 | ||
| | |5 | ||
|1. | |1.600 | ||
| | | | ||
|- | |- | ||
| | | | ||
|5\13 | |||
| | | | ||
| | |193; 1, 1, 4.{{Overline|6}} | ||
|5 | |||
|3 | |||
|1.667 | |||
| | |||
| | |||
| | |||
| | | | ||
|- | |- | ||
| | | | ||
| | | | ||
| | |12\31 | ||
| | |194.{{Overline|594}} | ||
|12 | |||
|7 | |7 | ||
| | |1.714 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |7\18 | ||
| | | | ||
| | |195; 2.8{{Overline|6}} | ||
| | |7 | ||
| | |4 | ||
| | |1.750 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |9\23 | ||
| | | | ||
| | |196.{{Overline|36}} | ||
| | |9 | ||
|5 | |5 | ||
| | |1.800 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |11\28 | ||
| | | | ||
| | |197; 67 | ||
| | |11 | ||
| | |6 | ||
| | |1.833 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |13\33 | ||
| | | | ||
| | |197; 2.{{Overline|135}} | ||
|13 | |||
|7 | |7 | ||
| | |1.857 | ||
| | | | ||
|- | |- | ||
| | | | ||
|15\38 | |||
| | | | ||
| | |197; 1, 2, 1, 1.{{Overline|54}} | ||
|15 | |||
| | |8 | ||
| | |1.875 | ||
| | |||
| | | | ||
|- | |- | ||
| | | | ||
|17\43 | |||
| | | | ||
|17 | |198; 17.1{{Overline|6}} | ||
|17 | |17 | ||
| | |9 | ||
| | |1.889 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |19\48 | ||
| | |||
|198: 3, 1, 28 | |||
|19 | |||
|10 | |||
|1.900 | |||
| | | | ||
|- | |- | ||
| | | | ||
|21\53 | |||
| | | | ||
| | |198; 2.3{{Overline|518}} | ||
|21 | |||
| | |11 | ||
| | |1.909 | ||
| | |||
| | | | ||
|- | |- | ||
| | | | ||
|23\58 | |||
| | | | ||
| | |198; 1, 3, 1.7 | ||
|23 | |||
| | |12 | ||
| | |1.917 | ||
| | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |25\63 | ||
| | | | ||
| | |198; 1, 2, 12.25 | ||
|25 | |||
|13 | |||
|1.923 | |||
| | |||
| | |||
| | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |27\68 | ||
| | | | ||
| | |198; 1, 3.{{Overline|405}} | ||
|27 | |||
|14 | |14 | ||
| | |1.929 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |29\73 | ||
| | | | ||
| | |198; 1, 1.1{{Overline|6}} | ||
| | |29 | ||
| | |15 | ||
| | |1.933 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |31\78 | ||
| | | | ||
| | |198; 1, 12, 2.8 | ||
| | |31 | ||
| | |16 | ||
| | |1.9375 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |33\83 | ||
| | | | ||
| | |198; 1.{{Overline|005}} | ||
| | |33 | ||
| | |17 | ||
| | |1.941 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |35\88 | ||
| | | | ||
| | |199; 19.{{Overline|18}} | ||
| | |35 | ||
| | |18 | ||
| | |1.944 | ||
| | | | ||
|- | |- | ||
| | |2\5 | ||
| | | | ||
| | | | ||
| | |200 | ||
| | |2 | ||
|1 | |1 | ||
| | |2.000 | ||
|Mahuric- | |Mahuric-Meantone ends, Mahuric-Pythagorean begins | ||
|- | |- | ||
| | | | ||
| | |17\42 | ||
| | | | ||
| | |201.{{Overline|9801}} | ||
| | |17 | ||
| | |8 | ||
| | |2.125 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |15\37 | ||
| | | | ||
| | |202; 4.0{{Overline|45}} | ||
| | |15 | ||
| | |7 | ||
| | |2.143 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |13\32 | ||
| | | | ||
| | |202; 1, 1, 2.0{{Overline|6}} | ||
| | |13 | ||
| | |6 | ||
| | |2.167 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |11\27 | ||
| | | | ||
| | |203; 13 | ||
| | |11 | ||
| | |5 | ||
| | |2.200 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |9\22 | ||
| | | | ||
| | |203; 1, 3.41{{Overline|6}} | ||
| | |9 | ||
| | |4 | ||
| | |2.250 | ||
| | | | ||
|- | |- | ||
| | | | ||
|7\ | |7\17 | ||
| | | | ||
| | |204; 1. 7.2 | ||
|7 | |7 | ||
| | |3 | ||
| | |2.333 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | | | ||
| | |12\29 | ||
| | |205; 1.4 | ||
| | |12 | ||
|5 | |5 | ||
| | |2.400 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |5\12 | ||
| | | | ||
|206; 1, 8.{{Overline|6}} | |||
|5 | |||
|2 | |||
|2.500 | |||
|Mahuric-Neogothic heartland is from here… | |||
|- | |- | ||
| | | | ||
| | | | ||
| | |18\43 | ||
| | |207; 1.{{Overline|4}} | ||
| | |18 | ||
| | |7 | ||
|2.571 | |||
| | | | ||
|- | |- | ||
| | | | ||
| | | | ||
| | |13\31 | ||
| | |208 | ||
|13 | |||
|5 | |5 | ||
| | |2.600 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |8\19 | ||
| | | | ||
|208; 1.4375 | |||
|8 | |||
|3 | |||
|2.667 | |||
|…to here | |||
|- | |- | ||
| | | | ||
|11\26 | |||
| | | | ||
| | |209; 1.{{Overline|90}} | ||
|11 | |||
|4 | |4 | ||
| | |2.750 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |14\33 | ||
| | | | ||
| | |210 | ||
| | |14 | ||
| | |5 | ||
| | |2.800 | ||
| | | | ||
|- | |- | ||
|3\7 | |||
| | | | ||
| | | | ||
| | |211; 1, 3.25 | ||
|3 | |3 | ||
| | |1 | ||
| | |3.000 | ||
|Mahuric-Pythagorean ends, Mahuric-Superpyth begins | |||
|- | |- | ||
| | | | ||
| | |22\51 | ||
| | | | ||
| | |212; 1, 9.{{Overline|3}} | ||
| | |22 | ||
| | |7 | ||
| | |3.143 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |19\44 | ||
| | | | ||
| | |213; 11.{{Overline|8}} | ||
| | |19 | ||
|3 | |6 | ||
|3.167 | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |16\37 | ||
| | | | ||
| | |213.3̄ | ||
| | |16 | ||
| | |5 | ||
| | |3.200 | ||
| | | | ||
|- | |- | ||
| | | | ||
|13\30 | |||
| | |||
|213; 1, 2.3{{Overline|18}} | |||
|13 | |||
|4 | |||
|3.250 | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |10\23 | ||
| | | | ||
| | |214; 3.5 | ||
| | |10 | ||
|3 | |3 | ||
| | |3.333 | ||
| | | | ||
|- | |- | ||
| | | | ||
|11\ | |7\16 | ||
| | |||
|215; 2.6 | |||
|7 | |||
|2 | |||
|3.500 | |||
| | |||
|- | |||
| | |||
|11\25 | |||
| | | | ||
| | |216; 2.541{{Overline|6}} | ||
|11 | |11 | ||
| | |3 | ||
| | |3.667 | ||
| | |||
|- | |||
| | |||
|15\34 | |||
| | | | ||
|- | |216; 1.152{{Overline|7}} | ||
| | |15 | ||
|17\37 | |4 | ||
| | |3.750 | ||
|224; 5.7{{Overline|2}} | | | ||
|17 | |- | ||
|3 | | | ||
|5.667 | |19\43 | ||
| | | | ||
|- | |217; 7 | ||
|6\13 | |19 | ||
| | |5 | ||
| | |3.800 | ||
|225 | | | ||
|6 | |- | ||
|1 | |4\9 | ||
|6.000 | | | ||
| | | | ||
|- | |218.{{Overline|18}} | ||
|1\3 | |4 | ||
| | |1 | ||
| | |4.000 | ||
|240 | | | ||
|1 | |- | ||
|0 | | | ||
|→ inf | |13\29 | ||
|Paucitonic | | | ||
|} | |219; 1, 2.55 | ||
|13 | |||
|3 | |||
|4.333 | |||
| | |||
|- | |||
| | |||
|9\20 | |||
| | |||
|220; 2.45 | |||
|9 | |||
|2 | |||
|4.500 | |||
| | |||
|- | |||
| | |||
|14\31 | |||
| | |||
|221; 19 | |||
|14 | |||
|3 | |||
|4.667 | |||
| | |||
|- | |||
|5\11 | |||
| | |||
| | |||
|222.{{Overline|2}} | |||
|5 | |||
|1 | |||
|5.000 | |||
|Mahuric-Superpyth ends | |||
|- | |||
| | |||
|11\24 | |||
| | |||
|223; 1, 2.6875 | |||
|11 | |||
|2 | |||
|5.500 | |||
| | |||
|- | |||
| | |||
|17\37 | |||
| | |||
|224; 5.7{{Overline|2}} | |||
|17 | |||
|3 | |||
|5.667 | |||
| | |||
|- | |||
|6\13 | |||
| | |||
| | |||
|225 | |||
|6 | |||
|1 | |||
|6.000 | |||
| | |||
|- | |||
|1\3 | |||
| | |||
| | |||
|240 | |||
|1 | |||
|0 | |||
|→ inf | |||
|Paucitonic | |||
|} | |||
== See also == | |||
[[2L 1s (4/3-equivalent)]] - idealized tuning | |||
[[4L 2s (7/4-equivalent)]] - Mixolydian Archytas temperament | |||
[[4L 2s (39/22-equivalent)]] - Mixolydian Neogothic temperament | |||
[[4L 2s (9/5-equivalent)]] - Mixolydian Meantone temperament | |||
[[6L 3s (7/3-equivalent)]] - Mahuric-Archytas temperament | |||
[[6L 3s (26/11-equivalent)]] - Mahuric-Neogothic temperament | |||
[[6L 3s (12/5-equivalent)]] - Mahuric-Meantone temperament | |||
[[8L 4s (28/9-equivalent)]] - Bijou Archytas temperament | |||
[[8L 4s (22/7-equivalent)]] - Bijou Neogothic temperament | |||
[[8L 4s (16/5-equivalent)]] - Bijou Meantone temperament | |||
[[10L 5s (112/27-equivalent)]] - Hyperionic Archytas temperament | |||
[[10L 5s (88/21-equivalent)]] - Hyperionic Neogothic temperament | |||
[[10L 5s (30/7-equivalent)]] - Hyperionic Meantone temperament<references /> | |||
[[ |