Neutral and interordinal intervals in MOS scales: Difference between revisions
Tags: Mobile edit Mobile web edit |
Tags: Mobile edit Mobile web edit |
||
Line 42: | Line 42: | ||
** Let r be the number of complete chunks (maximal contiguous strings of L's) in X, and let μ = n/(a+b). We'll obtain a contradiction. By the Discretizing Lemma, we have (|| denotes length): | ** Let r be the number of complete chunks (maximal contiguous strings of L's) in X, and let μ = n/(a+b). We'll obtain a contradiction. By the Discretizing Lemma, we have (|| denotes length): | ||
*** 1+A+B+floor((r+2)μ) <= |Y| <= 1+A+B+ceil((r+2)μ) | *** 1+A+B+floor((r+2)μ) <= |Y| <= 1+A+B+ceil((r+2)μ) | ||
*** 1+C+D+floor( | *** 1+C+D+floor(rμ) <= |X| <= 1+C+D+ceil(rμ) | ||
*** -1 = |Y|-|X| >= (A+B)-(C+D) + floor((r+2)μ) - ceil(rμ) | *** -1 = |Y|-|X| >= (A+B)-(C+D) + floor((r+2)μ) - ceil(rμ) | ||
*** = (A+B)-(C+D)-1 + floor((r+2)μ) - floor(rμ) | *** = (A+B)-(C+D)-1 + floor((r+2)μ) - floor(rμ) |