Constant structure: Difference between revisions
related CS to Rothenberg's property. Added an improper example. |
clarification of improper = CS |
||
Line 3: | Line 3: | ||
The term "constant structure" was coined by [[Erv Wilson]]. In academic music theory, constant structure is called the partitioning property, but Erv got there first. | The term "constant structure" was coined by [[Erv Wilson]]. In academic music theory, constant structure is called the partitioning property, but Erv got there first. | ||
In terms of [[Rothenberg propriety]], | In terms of [[Rothenberg propriety]], strictly proper scales have CS, and proper scales do not. Improper scales generally do. However the [[22edo]] scale C D E vF# G ^Ab B C (<code>4-4-3-2-2-6-1</code>) has both ambiguity (C-vF# 4th equals vF#-C 5th) and contradiction (^Ab-B 2nd exceeds E-G 3rd). The contradiction makes it improper and the ambiguity makes it not CS. | ||
To determine if a scale is CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an [[interval matrix]] ([[Scala]] can do this for you). A CS scale will never have the same interval appear in multiple columns of the matrix (columns correspond to generic interval classes). | To determine if a scale is CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an [[interval matrix]] ([[Scala]] can do this for you). A CS scale will never have the same interval appear in multiple columns of the matrix (columns correspond to generic interval classes). | ||
Line 289: | Line 289: | ||
|} | |} | ||
F# and Gb are the same pitch (600 cents) in 12edo, and this interval occurs as both an (augmented) fourth and a (diminished) fifth - so not constant structure. However, a meantone tuning of this scale, in which F# is narrower than Gb, would have constant structure. As would a pythagorean tuning or superpyth tuning, in which F# is wider than Gb. | F# and Gb are the same pitch (600 cents) in 12edo, and this interval occurs as both an (augmented) fourth and a (diminished) fifth - so not constant structure. However, a meantone tuning of this scale, in which F# is narrower than Gb, would have constant structure. As would a pythagorean tuning or superpyth tuning such as 22edo, in which F# is wider than Gb. | ||
== Density of CS scales in EDOs == | == Density of CS scales in EDOs == |