5040edo: Difference between revisions

Eliora (talk | contribs)
Eliora (talk | contribs)
Theory: listed the EDO's divisors and oh boy there's a lot of them
Line 3: Line 3:


== Theory ==
== Theory ==
5040 is a factorial (7! = 1·2·3·4·5·6·7), superabundant, and a highly composite number. Its divisors besides 1 and itself are 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210, 240, 252, 280, 315, 336, 360, 420, 504, 560, 630, 720, 840, 1008, 1260, 1680, 2520 - which is a total of 58.
5040 is a factorial (7! = 1·2·3·4·5·6·7), superabundant, and a highly composite number. Its divisors besides 1 and itself are {{EDOs|2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210, 240, 252, 280, 315, 336, 360, 420, 504, 560, 630, 720, 840, 1008, 1260, 1680, 2520}} - which is a total of 58.


5040 is the 19th superabundant and highly composite EDO, and it marks the end of the sequence where superabundant and highly composite numbers are the same - 7560 is the first highly composite that isn't superabundant.
5040 is the 19th superabundant and highly composite EDO, and it marks the end of the sequence where superabundant and highly composite numbers are the same - 7560 is the first highly composite that isn't superabundant.