65edo: Difference between revisions

Wikispaces>phylingual
**Imported revision 335537076 - Original comment: it's 65cET not 65edo**
Wikispaces>Andrew_Heathwaite
**Imported revision 495766552 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-05-15 15:02:14 UTC</tt>.<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2014-03-14 09:20:13 UTC</tt>.<br>
: The original revision id was <tt>335537076</tt>.<br>
: The original revision id was <tt>495766552</tt>.<br>
: The revision comment was: <tt>it's 65cET not 65edo</tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
Line 14: Line 14:


65edo approximates the intervals [[3_2|3/2]], [[5_4|5/4]], [[11_8|11/8]] and [[19_16|19/16]] well, so that it does a good job representing the 2.3.5.11.19 [[just intonation subgroup]]. To this one may want to add 13/8 and 17/16, giving the [[19-limit]] no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit [[k*N subgroups|2*65 subgroup]] 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as [[130edo]].
65edo approximates the intervals [[3_2|3/2]], [[5_4|5/4]], [[11_8|11/8]] and [[19_16|19/16]] well, so that it does a good job representing the 2.3.5.11.19 [[just intonation subgroup]]. To this one may want to add 13/8 and 17/16, giving the [[19-limit]] no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit [[k*N subgroups|2*65 subgroup]] 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as [[130edo]].
65edo contains [[13edo]] as a subset. The offset between a just perfect fifth at 702 cents and the 13edo superfifth at 738.5 cents, is approximately 2 degrees of 65edo. Therefore, an instrument fretted to 13edo, with open strings tuned to 3-limit intervals such as 4/3, 3/2, 9/8, 16/9 etc, will approximate a subset of 65edo. For an example of this, see [[https://soundcloud.com/andrew_heathwaite/rubble-a-xenuke-unfolded|Rubble: a Xenuke Unfolded]].


=Intervals=  
=Intervals=  
Line 95: Line 97:
&lt;br /&gt;
&lt;br /&gt;
65edo approximates the intervals &lt;a class="wiki_link" href="/3_2"&gt;3/2&lt;/a&gt;, &lt;a class="wiki_link" href="/5_4"&gt;5/4&lt;/a&gt;, &lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt; and &lt;a class="wiki_link" href="/19_16"&gt;19/16&lt;/a&gt; well, so that it does a good job representing the 2.3.5.11.19 &lt;a class="wiki_link" href="/just%20intonation%20subgroup"&gt;just intonation subgroup&lt;/a&gt;. To this one may want to add 13/8 and 17/16, giving the &lt;a class="wiki_link" href="/19-limit"&gt;19-limit&lt;/a&gt; no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;2*65 subgroup&lt;/a&gt; 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as &lt;a class="wiki_link" href="/130edo"&gt;130edo&lt;/a&gt;.&lt;br /&gt;
65edo approximates the intervals &lt;a class="wiki_link" href="/3_2"&gt;3/2&lt;/a&gt;, &lt;a class="wiki_link" href="/5_4"&gt;5/4&lt;/a&gt;, &lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt; and &lt;a class="wiki_link" href="/19_16"&gt;19/16&lt;/a&gt; well, so that it does a good job representing the 2.3.5.11.19 &lt;a class="wiki_link" href="/just%20intonation%20subgroup"&gt;just intonation subgroup&lt;/a&gt;. To this one may want to add 13/8 and 17/16, giving the &lt;a class="wiki_link" href="/19-limit"&gt;19-limit&lt;/a&gt; no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;2*65 subgroup&lt;/a&gt; 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as &lt;a class="wiki_link" href="/130edo"&gt;130edo&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
65edo contains &lt;a class="wiki_link" href="/13edo"&gt;13edo&lt;/a&gt; as a subset. The offset between a just perfect fifth at 702 cents and the 13edo superfifth at 738.5 cents, is approximately 2 degrees of 65edo. Therefore, an instrument fretted to 13edo, with open strings tuned to 3-limit intervals such as 4/3, 3/2, 9/8, 16/9 etc, will approximate a subset of 65edo. For an example of this, see &lt;a class="wiki_link_ext" href="https://soundcloud.com/andrew_heathwaite/rubble-a-xenuke-unfolded" rel="nofollow"&gt;Rubble: a Xenuke Unfolded&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h1&gt;