65edo: Difference between revisions

Wikispaces>xenwolf
**Imported revision 602901538 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
-----
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2016-12-29 17:51:20 UTC</tt>.<br>
: The original revision id was <tt>602901538</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">----


=&lt;span style="color: #750063; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;65 tone equal temperament&lt;/span&gt;=  
=<span style="color: #750063; font-family: 'Times New Roman',Times,serif; font-size: 113%;">65 tone equal temperament</span>=


**//65edo//** divides the [[octave]] into 65 equal parts of 18.4615 cents each. It can be characterized as the temperament which tempers out the [[schisma]], 32805/32768, the [[sensipent comma]], 78732/78125, and the [[wuerschmidt comma]]. In the [[7-limit]], there are two different maps; the first is &lt;65 103 151 182|, [[tempering out]] 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the [[5-limit]] over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit [[wuerschmidt temperament]] (wurschmidt and worschmidt) these two mappings provide.
'''''65edo''''' divides the [[Octave|octave]] into 65 equal parts of 18.4615 cents each. It can be characterized as the temperament which tempers out the [[schisma|schisma]], 32805/32768, the [[sensipent_comma|sensipent comma]], 78732/78125, and the [[Wuerschmidt_comma|wuerschmidt comma]]. In the [[7-limit|7-limit]], there are two different maps; the first is &lt;65 103 151 182|, [[tempering_out|tempering out]] 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the [[5-limit|5-limit]] over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit [[wuerschmidt_temperament|wuerschmidt temperament]] (wurschmidt and worschmidt) these two mappings provide.


65edo approximates the intervals [[3_2|3/2]], [[5_4|5/4]], [[11_8|11/8]] and [[19_16|19/16]] well, so that it does a good job representing the 2.3.5.11.19 [[just intonation subgroup]]. To this one may want to add 13/8 and 17/16, giving the [[19-limit]] no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit [[k*N subgroups|2*65 subgroup]] 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as [[130edo]].
65edo approximates the intervals [[3/2|3/2]], [[5/4|5/4]], [[11/8|11/8]] and [[19/16|19/16]] well, so that it does a good job representing the 2.3.5.11.19 [[just_intonation_subgroup|just intonation subgroup]]. To this one may want to add 13/8 and 17/16, giving the [[19-limit|19-limit]] no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit [[k*N_subgroups|2*65 subgroup]] 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as [[130edo|130edo]].


65edo contains [[13edo]] as a subset. The offset between a just perfect fifth at 702 cents and the 13edo superfifth at 738.5 cents, is approximately 2 degrees of 65edo. Therefore, an instrument fretted to 13edo, with open strings tuned to 3-limit intervals such as 4/3, 3/2, 9/8, 16/9 etc, will approximate a subset of 65edo. For an example of this, see [[https://soundcloud.com/andrew_heathwaite/rubble-a-xenuke-unfolded|Rubble: a Xenuke Unfolded]].
65edo contains [[13edo|13edo]] as a subset. The offset between a just perfect fifth at 702 cents and the 13edo superfifth at 738.5 cents, is approximately 2 degrees of 65edo. Therefore, an instrument fretted to 13edo, with open strings tuned to 3-limit intervals such as 4/3, 3/2, 9/8, 16/9 etc, will approximate a subset of 65edo. For an example of this, see [https://soundcloud.com/andrew_heathwaite/rubble-a-xenuke-unfolded Rubble: a Xenuke Unfolded].


=Intervals=  
=Intervals=
||~ [[Degree]] ||~ Size ([[cent|Cents]]) ||
||=  0 ||&gt;    0.0000 ||
||=  1 ||&gt;  18.4615 ||
||=  2 ||&gt;  36.9231 ||
||=  3 ||&gt;  55.3846 ||
||=  4 ||&gt;  73.8462 ||
||=  5 ||&gt;  92.3077 ||
||=  6 ||&gt;  110.7692 ||
||=  7 ||&gt;  129.2308 ||
||=  8 ||&gt;  147.6923 ||
||=  9 ||&gt;  166.1538 ||
||= 10 ||&gt;  184.6154 ||
||= 11 ||&gt;  203.0769 ||
||= 12 ||&gt;  221.5385 ||
||= 13 ||&gt;  240.0000 ||
||= 14 ||&gt;  258.4615 ||
||= 15 ||&gt;  276.9231 ||
||= 16 ||&gt;  295.3846 ||
||= 17 ||&gt;  313.8462 ||
||= 18 ||&gt;  332.3077 ||
||= 19 ||&gt;  350.7692 ||
||= 20 ||&gt;  369.2308 ||
||= 21 ||&gt;  387.6923 ||
||= 22 ||&gt;  406.1538 ||
||= 23 ||&gt;  424.6154 ||
||= 24 ||&gt;  443.0769 ||
||= 25 ||&gt;  461.5385 ||
||= 26 ||&gt;  480.0000 ||
||= 27 ||&gt;  498.4615 ||
||= 28 ||&gt;  516.9231 ||
||= 29 ||&gt;  535.3846 ||
||= 30 ||&gt;  553.8462 ||
||= 31 ||&gt;  572.3077 ||
||= 32 ||&gt;  590.7692 ||
||= 33 ||&gt;  609.2308 ||
||= 34 ||&gt;  627.6923 ||
||= 35 ||&gt;  646.1538 ||
||= 36 ||&gt;  664.6154 ||
||= 37 ||&gt;  683.0769 ||
||= 38 ||&gt;  701.5385 ||
||= 39 ||&gt;  720.0000 ||
||= 40 ||&gt;  738.4615 ||
||= 41 ||&gt;  756.9231 ||
||= 42 ||&gt;  775.3846 ||
||= 43 ||&gt;  793.8462 ||
||= 44 ||&gt;  812.3077 ||
||= 45 ||&gt;  830.7692 ||
||= 46 ||&gt;  849.2308 ||
||= 47 ||&gt;  867.6923 ||
||= 48 ||&gt;  886.1538 ||
||= 49 ||&gt;  904.6154 ||
||= 50 ||&gt;  923.0769 ||
||= 51 ||&gt;  941.5385 ||
||= 52 ||&gt;  960.0000 ||
||= 53 ||&gt;  978.4615 ||
||= 54 ||&gt;  996.9231 ||
||= 55 ||&gt; 1015.3846 ||
||= 56 ||&gt; 1033.8462 ||
||= 57 ||&gt; 1052.3077 ||
||= 58 ||&gt; 1070.7692 ||
||= 59 ||&gt; 1089.2308 ||
||= 60 ||&gt; 1107.6923 ||
||= 61 ||&gt; 1126.1538 ||
||= 62 ||&gt; 1144.6154 ||
||= 63 ||&gt; 1163.0769 ||
||= 64 ||&gt; 1181.5385 ||
||= 65 ||&gt; 1200.0000 ||


=Scales=
{| class="wikitable"
[[photia7]]
|-
[[photia12]]</pre></div>
! | [[Degree|Degree]]
<h4>Original HTML content:</h4>
! | Size ([[cent|Cents]])
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;65edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;hr /&gt;
|-
&lt;br /&gt;
| style="text-align:center;" | 0
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x65 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #750063; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;65 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
| style="text-align:right;" | 0.0000
&lt;br /&gt;
|-
&lt;strong&gt;&lt;em&gt;65edo&lt;/em&gt;&lt;/strong&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 65 equal parts of 18.4615 cents each. It can be characterized as the temperament which tempers out the &lt;a class="wiki_link" href="/schisma"&gt;schisma&lt;/a&gt;, 32805/32768, the &lt;a class="wiki_link" href="/sensipent%20comma"&gt;sensipent comma&lt;/a&gt;, 78732/78125, and the &lt;a class="wiki_link" href="/wuerschmidt%20comma"&gt;wuerschmidt comma&lt;/a&gt;. In the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, there are two different maps; the first is &amp;lt;65 103 151 182|, &lt;a class="wiki_link" href="/tempering%20out"&gt;tempering out&lt;/a&gt; 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &amp;lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit &lt;a class="wiki_link" href="/wuerschmidt%20temperament"&gt;wuerschmidt temperament&lt;/a&gt; (wurschmidt and worschmidt) these two mappings provide.&lt;br /&gt;
| style="text-align:center;" | 1
&lt;br /&gt;
| style="text-align:right;" | 18.4615
65edo approximates the intervals &lt;a class="wiki_link" href="/3_2"&gt;3/2&lt;/a&gt;, &lt;a class="wiki_link" href="/5_4"&gt;5/4&lt;/a&gt;, &lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt; and &lt;a class="wiki_link" href="/19_16"&gt;19/16&lt;/a&gt; well, so that it does a good job representing the 2.3.5.11.19 &lt;a class="wiki_link" href="/just%20intonation%20subgroup"&gt;just intonation subgroup&lt;/a&gt;. To this one may want to add 13/8 and 17/16, giving the &lt;a class="wiki_link" href="/19-limit"&gt;19-limit&lt;/a&gt; no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;2*65 subgroup&lt;/a&gt; 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as &lt;a class="wiki_link" href="/130edo"&gt;130edo&lt;/a&gt;.&lt;br /&gt;
|-
&lt;br /&gt;
| style="text-align:center;" | 2
65edo contains &lt;a class="wiki_link" href="/13edo"&gt;13edo&lt;/a&gt; as a subset. The offset between a just perfect fifth at 702 cents and the 13edo superfifth at 738.5 cents, is approximately 2 degrees of 65edo. Therefore, an instrument fretted to 13edo, with open strings tuned to 3-limit intervals such as 4/3, 3/2, 9/8, 16/9 etc, will approximate a subset of 65edo. For an example of this, see &lt;a class="wiki_link_ext" href="https://soundcloud.com/andrew_heathwaite/rubble-a-xenuke-unfolded" rel="nofollow"&gt;Rubble: a Xenuke Unfolded&lt;/a&gt;.&lt;br /&gt;
| style="text-align:right;" | 36.9231
&lt;br /&gt;
|-
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h1&gt;
| style="text-align:center;" | 3
| style="text-align:right;" | 55.3846
|-
| style="text-align:center;" | 4
| style="text-align:right;" | 73.8462
|-
| style="text-align:center;" | 5
| style="text-align:right;" | 92.3077
|-
| style="text-align:center;" | 6
| style="text-align:right;" | 110.7692
|-
| style="text-align:center;" | 7
| style="text-align:right;" | 129.2308
|-
| style="text-align:center;" | 8
| style="text-align:right;" | 147.6923
|-
| style="text-align:center;" | 9
| style="text-align:right;" | 166.1538
|-
| style="text-align:center;" | 10
| style="text-align:right;" | 184.6154
|-
| style="text-align:center;" | 11
| style="text-align:right;" | 203.0769
|-
| style="text-align:center;" | 12
| style="text-align:right;" | 221.5385
|-
| style="text-align:center;" | 13
| style="text-align:right;" | 240.0000
|-
| style="text-align:center;" | 14
| style="text-align:right;" | 258.4615
|-
| style="text-align:center;" | 15
| style="text-align:right;" | 276.9231
|-
| style="text-align:center;" | 16
| style="text-align:right;" | 295.3846
|-
| style="text-align:center;" | 17
| style="text-align:right;" | 313.8462
|-
| style="text-align:center;" | 18
| style="text-align:right;" | 332.3077
|-
| style="text-align:center;" | 19
| style="text-align:right;" | 350.7692
|-
| style="text-align:center;" | 20
| style="text-align:right;" | 369.2308
|-
| style="text-align:center;" | 21
| style="text-align:right;" | 387.6923
|-
| style="text-align:center;" | 22
| style="text-align:right;" | 406.1538
|-
| style="text-align:center;" | 23
| style="text-align:right;" | 424.6154
|-
| style="text-align:center;" | 24
| style="text-align:right;" | 443.0769
|-
| style="text-align:center;" | 25
| style="text-align:right;" | 461.5385
|-
| style="text-align:center;" | 26
| style="text-align:right;" | 480.0000
|-
| style="text-align:center;" | 27
| style="text-align:right;" | 498.4615
|-
| style="text-align:center;" | 28
| style="text-align:right;" | 516.9231
|-
| style="text-align:center;" | 29
| style="text-align:right;" | 535.3846
|-
| style="text-align:center;" | 30
| style="text-align:right;" | 553.8462
|-
| style="text-align:center;" | 31
| style="text-align:right;" | 572.3077
|-
| style="text-align:center;" | 32
| style="text-align:right;" | 590.7692
|-
| style="text-align:center;" | 33
| style="text-align:right;" | 609.2308
|-
| style="text-align:center;" | 34
| style="text-align:right;" | 627.6923
|-
| style="text-align:center;" | 35
| style="text-align:right;" | 646.1538
|-
| style="text-align:center;" | 36
| style="text-align:right;" | 664.6154
|-
| style="text-align:center;" | 37
| style="text-align:right;" | 683.0769
|-
| style="text-align:center;" | 38
| style="text-align:right;" | 701.5385
|-
| style="text-align:center;" | 39
| style="text-align:right;" | 720.0000
|-
| style="text-align:center;" | 40
| style="text-align:right;" | 738.4615
|-
| style="text-align:center;" | 41
| style="text-align:right;" | 756.9231
|-
| style="text-align:center;" | 42
| style="text-align:right;" | 775.3846
|-
| style="text-align:center;" | 43
| style="text-align:right;" | 793.8462
|-
| style="text-align:center;" | 44
| style="text-align:right;" | 812.3077
|-
| style="text-align:center;" | 45
| style="text-align:right;" | 830.7692
|-
| style="text-align:center;" | 46
| style="text-align:right;" | 849.2308
|-
| style="text-align:center;" | 47
| style="text-align:right;" | 867.6923
|-
| style="text-align:center;" | 48
| style="text-align:right;" | 886.1538
|-
| style="text-align:center;" | 49
| style="text-align:right;" | 904.6154
|-
| style="text-align:center;" | 50
| style="text-align:right;" | 923.0769
|-
| style="text-align:center;" | 51
| style="text-align:right;" | 941.5385
|-
| style="text-align:center;" | 52
| style="text-align:right;" | 960.0000
|-
| style="text-align:center;" | 53
| style="text-align:right;" | 978.4615
|-
| style="text-align:center;" | 54
| style="text-align:right;" | 996.9231
|-
| style="text-align:center;" | 55
| style="text-align:right;" | 1015.3846
|-
| style="text-align:center;" | 56
| style="text-align:right;" | 1033.8462
|-
| style="text-align:center;" | 57
| style="text-align:right;" | 1052.3077
|-
| style="text-align:center;" | 58
| style="text-align:right;" | 1070.7692
|-
| style="text-align:center;" | 59
| style="text-align:right;" | 1089.2308
|-
| style="text-align:center;" | 60
| style="text-align:right;" | 1107.6923
|-
| style="text-align:center;" | 61
| style="text-align:right;" | 1126.1538
|-
| style="text-align:center;" | 62
| style="text-align:right;" | 1144.6154
|-
| style="text-align:center;" | 63
| style="text-align:right;" | 1163.0769
|-
| style="text-align:center;" | 64
| style="text-align:right;" | 1181.5385
|-
| style="text-align:center;" | 65
| style="text-align:right;" | 1200.0000
|}


&lt;table class="wiki_table"&gt;
=Scales=
    &lt;tr&gt;
[[photia7|photia7]]
        &lt;th&gt;&lt;a class="wiki_link" href="/Degree"&gt;Degree&lt;/a&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Size (&lt;a class="wiki_link" href="/cent"&gt;Cents&lt;/a&gt;)&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;0.0000&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;18.4615&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;36.9231&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;55.3846&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;73.8462&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;92.3077&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;110.7692&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;129.2308&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;147.6923&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;166.1538&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;184.6154&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;203.0769&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;221.5385&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;240.0000&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;258.4615&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;276.9231&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;295.3846&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;313.8462&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;332.3077&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;350.7692&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;369.2308&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;387.6923&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;406.1538&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;424.6154&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;443.0769&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;461.5385&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;480.0000&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;498.4615&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;516.9231&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;535.3846&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;553.8462&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;572.3077&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;590.7692&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;609.2308&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;627.6923&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;646.1538&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;664.6154&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;683.0769&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;701.5385&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;720.0000&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;738.4615&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;756.9231&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;775.3846&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;793.8462&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;812.3077&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;830.7692&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;849.2308&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;867.6923&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;886.1538&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;904.6154&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;923.0769&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;941.5385&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;960.0000&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;978.4615&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;996.9231&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;1015.3846&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;56&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;1033.8462&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;57&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;1052.3077&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;1070.7692&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;59&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;1089.2308&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;60&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;1107.6923&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;61&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;1126.1538&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;62&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;1144.6154&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;63&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;1163.0769&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;64&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;1181.5385&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;65&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;1200.0000&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
[[photia12|photia12]]      [[Category:11/8]]
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Scales&lt;/h1&gt;
[[Category:13/8]]
&lt;a class="wiki_link" href="/photia7"&gt;photia7&lt;/a&gt;&lt;br /&gt;
[[Category:17/16]]
&lt;a class="wiki_link" href="/photia12"&gt;photia12&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
[[Category:19/16]]
[[Category:3/2]]
[[Category:5/4]]
[[Category:65edo]]
[[Category:edo]]
[[Category:intervals]]
[[Category:listen]]
[[Category:schismic]]
[[Category:sensipent]]
[[Category:subgroup]]
[[Category:theory]]
[[Category:wuerschmidt]]
[[Category:wurschmidt]]