1200edo: Difference between revisions

Eliora (talk | contribs)
nope, it doesn't work, I'll ask on discord
Eliora (talk | contribs)
style, reword, sectioning
Line 5: Line 5:
{{Harmonics in equal|1200}}
{{Harmonics in equal|1200}}


Upwards to the 47-limit, 1200edo offers good approximations (less than 17%, one standard deviation) for 2, 3, 7, 17, 31, 41, and 47 harmonics. Uniquely, 47th harmonic is 6666 steps normally and 666 steps reduced. The divisors of 1200 are {{EDOs|1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 25, 30, 40, 48, 50, 60, 75, 80, 100, 120, 150, 200, 240, 300, 400, 600}}. These are all the edos whose step size is an integer amount of cents, and which can be played exactly on any digital audio workstation that offers detuning by cents.
The divisors of 1200 are {{EDOs|1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 25, 30, 40, 48, 50, 60, 75, 80, 100, 120, 150, 200, 240, 300, 400, 600}}. These are all the edos whose step size is an integer amount of cents, and which can be played exactly on any digital audio workstation that offers detuning by cents.


1200edo is uniquely [[consistent]] through the [[11-limit]], which means the intervals of the 11-limit [[tonality diamond]], and hence their size in cents rounded to the nearest integer, can be found by applying the 11-limit [[patent val]] {{val| 1200 1902 2786 3369 4151 }}. It is [[contorted]] in the [[5-limit]], having the same mapping as 600edo. In the [[7-limit]], it tempers out 2460375/2458624 and 95703125/95551488, leading to a temperament it [[support]]s with a period of 1/3 octave and a generator which is an approximate 225/224 of 7\1200, also supported by [[171edo]]. In the 11-limit, it tempers out 9801/9800, 234375/234256 and 825000/823543, leading to a temperament with a half-octave period and an approximate 99/98 generator of 17\1200, also supported by [[494edo]]. In the 7-limit, it provides a val, 1200ccd, which is extremely closely close to the 7-limit [[POTE tuning]] of [[quadritikleismic temperament]]: {{val| 1200 1902 2785 3368 }}. It also provides the optimal patent val for the 224&752 temperament tempering out 2200/2197, 4096/4095, 9801/9800 and 35750/35721.
1200edo is uniquely [[consistent]] through the [[11-limit]]. As a corollary, this means that whole-cent approximations of the 11-limit [[tonality diamond]] intervals are conveniently represented through the 11-limit [[patent val]] {{val| 1200 1902 2786 3369 4151 }}. It is [[contorted]] in the [[5-limit]], having the same mapping as 600edo. Upwards to the 47-limit, 1200edo offers good approximations (less than 17%, one standard deviation) for 2, 3, 7, 17, 31, 41, and 47 harmonics. Remarkably, 47th harmonic is 6666 steps normally and 666 steps reduced.
 
=== Regular temperament theory ===
In the [[7-limit]], it tempers out 2460375/2458624 and 95703125/95551488, leading to a temperament it [[support]]s with a period of 1/3 octave and a generator which is an approximate 225/224 of 7\1200, also supported by [[171edo]].  
 
In the 11-limit, it tempers out 9801/9800, 234375/234256 and 825000/823543, leading to a temperament with a half-octave period and an approximate 99/98 generator of 17\1200, also supported by [[494edo]]. In the 7-limit, it provides a val, 1200ccd, which is extremely closely close to the 7-limit [[POTE tuning]] of [[quadritikleismic temperament]]: {{val| 1200 1902 2785 3368 }}. It also provides the optimal patent val for the 224&752 temperament tempering out 2200/2197, 4096/4095, 9801/9800 and 35750/35721.


== Regular temperament properties ==
== Regular temperament properties ==