8edo: Difference between revisions
Create temperament section, expand commas. |
CompactStar (talk | contribs) No edit summary |
||
Line 12: | Line 12: | ||
{{Harmonics in equal|8|intervals=odd}} | {{Harmonics in equal|8|intervals=odd}} | ||
[[File:8edo scale.mp3|thumb|A chromatic 8edo scale on C.]] | [[File:8edo scale.mp3|thumb|A chromatic 8edo scale on C.]] | ||
8edo forms an odd and even pitch set of two diminished seventh chords, which when used in combination yield dissonance. The system has been described as a "barbaric" harmonic system; even so, it does a good job representing the [[just intonation subgroup]]s 2.11/3.13/5, with good intervals of [[13/10]] and an excellent version of [[11/6]]. | 8edo forms an odd and even pitch set of two diminished seventh chords, which when used in combination yield dissonance. The system has been described as a "barbaric" harmonic system; even so, it does a good job representing the [[just intonation subgroup]]s 2.11/3.13/5, with good intervals of [[13/10]] and an excellent version of [[11/6]]. Stacking the 450-cent interval can result in some semi-consonant chords such as 0-3-6 degrees although these still are quite dissonant compared to standard root-3rd-P5 triads. | ||
Another way of looking at 8edo is to treat a chord of 0-1-2-3-4 degrees (0-150-300-450-600 cents) as approximating harmonics 10:11:12:13:14 (~0-165-316-454-583 cents), which is not too implausible if you can buy that 12edo is a 5-limit temperament. This interpretation would imply that 121/120, 144/143, 169/168, and hence also 36/35 and 66/65, are tempered out. | Another way of looking at 8edo is to treat a chord of 0-1-2-3-4 degrees (0-150-300-450-600 cents) as approximating harmonics 10:11:12:13:14 (~0-165-316-454-583 cents), which is not too implausible if you can buy that 12edo is a 5-limit temperament. This interpretation would imply that 121/120, 144/143, 169/168, and hence also 36/35 and 66/65, are tempered out. |