53edo: Difference between revisions

Wikispaces>phylingual
**Imported revision 343178536 - Original comment: **
Wikispaces>hstraub
**Imported revision 343183674 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-06-06 10:14:56 UTC</tt>.<br>
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2012-06-06 10:29:32 UTC</tt>.<br>
: The original revision id was <tt>343178536</tt>.<br>
: The original revision id was <tt>343183674</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 10: Line 10:
The famous //53 equal division// divides the octave into 53 equal comma-sized parts of 22.642 cents each. It is notable as a [[xenharmonic/5-limit|5-limit]] system, a fact apparently first noted by Isaac Newton, tempering out the schisma, 32805/32768, the kleisma, 15625/15552, the amity comma, 1600000/1594323 and the semicomma, 2109375/2097152. In the 7-limit it tempers out 225/224, 1728/1715 and 3125/3087, the marvel comma, the gariboh, and the orwell comma. In the 11-limit, it tempers out 99/98 and 121/120, and is the [[xenharmonic/optimal patent val|optimal patent val]] for [[xenharmonic/Nuwell family|Big Brother]] temperament, which tempers out both, as well as 11-limit [[xenharmonic/Semicomma family|orwell temperament]], which also tempers out the 11-limit comma 176/175. In the 13-limit, it tempers out 169/168 and 245/243, and gives the optimal patent val for [[xenharmonic/Marvel family|athene temperament]]. It is the eighth [[xenharmonic/The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta integral edo]] and the 16th [[xenharmonic/prime numbers|prime]] edo, following [[xenharmonic/47edo|47edo]] and coming before [[xenharmonic/59edo|59edo]].
The famous //53 equal division// divides the octave into 53 equal comma-sized parts of 22.642 cents each. It is notable as a [[xenharmonic/5-limit|5-limit]] system, a fact apparently first noted by Isaac Newton, tempering out the schisma, 32805/32768, the kleisma, 15625/15552, the amity comma, 1600000/1594323 and the semicomma, 2109375/2097152. In the 7-limit it tempers out 225/224, 1728/1715 and 3125/3087, the marvel comma, the gariboh, and the orwell comma. In the 11-limit, it tempers out 99/98 and 121/120, and is the [[xenharmonic/optimal patent val|optimal patent val]] for [[xenharmonic/Nuwell family|Big Brother]] temperament, which tempers out both, as well as 11-limit [[xenharmonic/Semicomma family|orwell temperament]], which also tempers out the 11-limit comma 176/175. In the 13-limit, it tempers out 169/168 and 245/243, and gives the optimal patent val for [[xenharmonic/Marvel family|athene temperament]]. It is the eighth [[xenharmonic/The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta integral edo]] and the 16th [[xenharmonic/prime numbers|prime]] edo, following [[xenharmonic/47edo|47edo]] and coming before [[xenharmonic/59edo|59edo]].


53EDO has also found a certain dissemination as an EDO tuning for [[xenharmonic/Arabic, Turkish, Persian|Arabic/Turkish/Persian music]] .
53EDO has also found a certain dissemination as an EDO tuning for [[Arabic, Turkish, Persian|Arabic/Turkish/Persian music]] .


[[http://en.wikipedia.org/wiki/53_equal_temperament|Wikipeda article about 53edo]]
[[http://en.wikipedia.org/wiki/53_equal_temperament|Wikipeda article about 53edo]]
Line 101: Line 101:
  The famous &lt;em&gt;53 equal division&lt;/em&gt; divides the octave into 53 equal comma-sized parts of 22.642 cents each. It is notable as a &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/5-limit"&gt;5-limit&lt;/a&gt; system, a fact apparently first noted by Isaac Newton, tempering out the schisma, 32805/32768, the kleisma, 15625/15552, the amity comma, 1600000/1594323 and the semicomma, 2109375/2097152. In the 7-limit it tempers out 225/224, 1728/1715 and 3125/3087, the marvel comma, the gariboh, and the orwell comma. In the 11-limit, it tempers out 99/98 and 121/120, and is the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt; for &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Nuwell%20family"&gt;Big Brother&lt;/a&gt; temperament, which tempers out both, as well as 11-limit &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Semicomma%20family"&gt;orwell temperament&lt;/a&gt;, which also tempers out the 11-limit comma 176/175. In the 13-limit, it tempers out 169/168 and 245/243, and gives the optimal patent val for &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Marvel%20family"&gt;athene temperament&lt;/a&gt;. It is the eighth &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists"&gt;zeta integral edo&lt;/a&gt; and the 16th &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/prime%20numbers"&gt;prime&lt;/a&gt; edo, following &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/47edo"&gt;47edo&lt;/a&gt; and coming before &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/59edo"&gt;59edo&lt;/a&gt;.&lt;br /&gt;
  The famous &lt;em&gt;53 equal division&lt;/em&gt; divides the octave into 53 equal comma-sized parts of 22.642 cents each. It is notable as a &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/5-limit"&gt;5-limit&lt;/a&gt; system, a fact apparently first noted by Isaac Newton, tempering out the schisma, 32805/32768, the kleisma, 15625/15552, the amity comma, 1600000/1594323 and the semicomma, 2109375/2097152. In the 7-limit it tempers out 225/224, 1728/1715 and 3125/3087, the marvel comma, the gariboh, and the orwell comma. In the 11-limit, it tempers out 99/98 and 121/120, and is the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt; for &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Nuwell%20family"&gt;Big Brother&lt;/a&gt; temperament, which tempers out both, as well as 11-limit &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Semicomma%20family"&gt;orwell temperament&lt;/a&gt;, which also tempers out the 11-limit comma 176/175. In the 13-limit, it tempers out 169/168 and 245/243, and gives the optimal patent val for &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Marvel%20family"&gt;athene temperament&lt;/a&gt;. It is the eighth &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists"&gt;zeta integral edo&lt;/a&gt; and the 16th &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/prime%20numbers"&gt;prime&lt;/a&gt; edo, following &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/47edo"&gt;47edo&lt;/a&gt; and coming before &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/59edo"&gt;59edo&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
53EDO has also found a certain dissemination as an EDO tuning for &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/-/Arabic%2C%20Turkish%2C%20Persian%7CArabic/Turkish/Persian%20music"&gt;xenharmonic/Arabic, Turkish, Persian|Arabic/Turkish/Persian music&lt;/a&gt; .&lt;br /&gt;
53EDO has also found a certain dissemination as an EDO tuning for &lt;a class="wiki_link" href="/Arabic%2C%20Turkish%2C%20Persian"&gt;Arabic/Turkish/Persian music&lt;/a&gt; .&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/53_equal_temperament" rel="nofollow"&gt;Wikipeda article about 53edo&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/53_equal_temperament" rel="nofollow"&gt;Wikipeda article about 53edo&lt;/a&gt;&lt;br /&gt;