125edo: Difference between revisions
m Sort key |
m Infobox ET now computes most parameters automatically |
||
Line 1: | Line 1: | ||
{{Infobox ET | {{Infobox ET}} | ||
}} | |||
The '''125 equal divisions of the octave''' ('''125edo'''), or the '''125(-tone) equal temperament''' ('''125tet''', '''125et''') when viewed from a [[regular temperament]] perspective, divides the [[octave]] into 125 [[equal]] parts of exactly 9.6 [[cent]]s each. Being the cube closest to division of the octave by the Germanic [[Wikipedia: Long hundred|long hundred]], 125edo has a unit step which is the cubic (fine) relative cent of [[1edo]]. | The '''125 equal divisions of the octave''' ('''125edo'''), or the '''125(-tone) equal temperament''' ('''125tet''', '''125et''') when viewed from a [[regular temperament]] perspective, divides the [[octave]] into 125 [[equal]] parts of exactly 9.6 [[cent]]s each. Being the cube closest to division of the octave by the Germanic [[Wikipedia: Long hundred|long hundred]], 125edo has a unit step which is the cubic (fine) relative cent of [[1edo]]. |