1789edo: Difference between revisions
No edit summary |
|||
Line 16: | Line 16: | ||
Since 1789edo contains the 2.5 subgroup, it can be used for the finite "decimal" temperament - that is, where all the interval targets in just intonation are expressed as terminating decimals. For example, [[5/4]], [[25/16]], [[128/125]], [[32/25]], 625/512, etc. This rings particularly true for the French attempts to decimalize a lot more things than we are used to today. This property of 1789edo is amplified by poor approximation of 3 and 7, allowing for cognitive separation of the intervals (or whatever is left of it at such small step size). | Since 1789edo contains the 2.5 subgroup, it can be used for the finite "decimal" temperament - that is, where all the interval targets in just intonation are expressed as terminating decimals. For example, [[5/4]], [[25/16]], [[128/125]], [[32/25]], 625/512, etc. This rings particularly true for the French attempts to decimalize a lot more things than we are used to today. This property of 1789edo is amplified by poor approximation of 3 and 7, allowing for cognitive separation of the intervals (or whatever is left of it at such small step size). | ||
Using the maximal evenness method of finding rank two temperaments, we get a | Using the maximal evenness method of finding rank two temperaments, we get a 1525 & 1789 temperament.<sup>[which mapping?]</sup> | ||
=== Other === | === Other === |