35edo: Difference between revisions

Fredg999 category edits (talk | contribs)
m Removing from Category:Theory using Cat-a-lot
Fredg999 category edits (talk | contribs)
m Sort key, misc. edits (markup cleanup)
Line 1: Line 1:
= Theory =
== Theory ==
{{Odd harmonics in edo|edo=35}}
{{Odd harmonics in edo|edo=35}}
35-tET or 35-[[EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[cent|34.29¢]] each.
35-tET or 35-[[EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[cent|34.29¢]] each.
Line 5: Line 5:
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[macrotonal edos]]: [[5edo]] and [[7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 [[Just_intonation_subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators (7/5 and 17/11 stand out, having less than 1 cent error). Therefore among whitewood tunings it is very versatile; you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore [[22edo]]'s more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for [[greenwood]] and [[secund]] temperaments, as well as 11-limit [[muggles]], and the 35f val is an excellent tuning for 13-limit muggles. 35edo is the largest edo with a lack of a diatonic scale.
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[macrotonal edos]]: [[5edo]] and [[7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 [[Just_intonation_subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators (7/5 and 17/11 stand out, having less than 1 cent error). Therefore among whitewood tunings it is very versatile; you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore [[22edo]]'s more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for [[greenwood]] and [[secund]] temperaments, as well as 11-limit [[muggles]], and the 35f val is an excellent tuning for 13-limit muggles. 35edo is the largest edo with a lack of a diatonic scale.


=Notation=
== Notation ==
 
{| class="wikitable"
{| class="wikitable"
|-
|-
! style="text-align:center;" | Degrees
! Degrees
! style="text-align:center;" | Cents
! Cents
! colspan="3" style="text-align:center;" | [[Ups_and_Downs_Notation|Up/down]] [[Ups_and_Downs_Notation|Notation]]
! colspan="3" | [[Ups and downs notation]]
![[Dual-fifth tuning|Dual-fifth]] notation
! [[Dual-fifth tuning|Dual-fifth]] notation
<small>based on closest 12edo interval</small>
<small>based on closest 12edo interval</small>
|-
|-
| style="text-align:center;" | 0
| 0
| style="text-align:center;" | 0.000
| 0.000
| style="text-align:center;" | unison
| unison
| style="text-align:center;" | 1
| 1
| style="text-align:center;" | D
| D
|1sn, prime
| 1sn, prime
|-
|-
| style="text-align:center;" | 1
| 1
| style="text-align:center;" | 34.286
| 34.286
| style="text-align:center;" | up unison
| up unison
| style="text-align:center;" | ^1
| ^1
| style="text-align:center;" | ^D
| ^D
|augmented 1sn
| augmented 1sn
|-
|-
| style="text-align:center;" | 2
| 2
| style="text-align:center;" | 68.571
| 68.571
| style="text-align:center;" | double-up unison
| double-up unison
| style="text-align:center;" | ^^1
| ^^1
| style="text-align:center;" | ^^D
| ^^D
|diminished 2nd
| diminished 2nd
|-
|-
| style="text-align:center;" | 3
| 3
| style="text-align:center;" | 102.857
| 102.857
| style="text-align:center;" | double-down 2nd
| double-down 2nd
| style="text-align:center;" | vv2
| vv2
| style="text-align:center;" | vvE
| vvE
|minor 2nd
| minor 2nd
|-
|-
| style="text-align:center;" | 4
| 4
| style="text-align:center;" | 137.143
| 137.143
| style="text-align:center;" | down 2nd
| down 2nd
| style="text-align:center;" | v2
| v2
| style="text-align:center;" | vE
| vE
|neutral 2nd
| neutral 2nd
|-
|-
| style="text-align:center;" | 5
| 5
| style="text-align:center;" |171.429
| 171.429
| style="text-align:center;" | 2nd
| 2nd
| style="text-align:center;" | 2
| 2
| style="text-align:center;" | E
| E
|submajor 2nd
| submajor 2nd
|-
|-
| style="text-align:center;" | 6
| 6
| style="text-align:center;" | 205.714
| 205.714
| style="text-align:center;" | up 2nd
| up 2nd
| style="text-align:center;" | ^2
| ^2
| style="text-align:center;" | ^E
| ^E
|major 2nd
| major 2nd
|-
|-
| style="text-align:center;" | 7
| 7
| style="text-align:center;" | 240
| 240
| style="text-align:center;" | double-up 2nd
| double-up 2nd
| style="text-align:center;" | ^^2
| ^^2
| style="text-align:center;" | ^^E
| ^^E
|supermajor 2nd
| supermajor 2nd
|-
|-
| style="text-align:center;" | 8
| 8
| style="text-align:center;" | 274.286
| 274.286
| style="text-align:center;" | double-down 3rd
| double-down 3rd
| style="text-align:center;" | vv3
| vv3
| style="text-align:center;" | vvF
| vvF
|diminished 3rd
| diminished 3rd
|-
|-
| style="text-align:center;" | 9
| 9
| style="text-align:center;" | 308.571
| 308.571
| style="text-align:center;" | down 3rd
| down 3rd
| style="text-align:center;" | v3
| v3
| style="text-align:center;" | vF
| vF
|minor 3rd
| minor 3rd
|-
|-
| style="text-align:center;" | 10
| 10
| style="text-align:center;" |342.857
| 342.857
| style="text-align:center;" | 3rd
| 3rd
| style="text-align:center;" | 3
| 3
| style="text-align:center;" | F
| F
|neutral 3rd
| neutral 3rd
|-
|-
| style="text-align:center;" | 11
| 11
| style="text-align:center;" | 377.143
| 377.143
| style="text-align:center;" | up 3rd
| up 3rd
| style="text-align:center;" | ^3
| ^3
| style="text-align:center;" | ^F
| ^F
|major 3rd
| major 3rd
|-
|-
| style="text-align:center;" | 12
| 12
| style="text-align:center;" | 411.429
| 411.429
| style="text-align:center;" | double-up 3rd
| double-up 3rd
| style="text-align:center;" | ^^3
| ^^3
| style="text-align:center;" | ^^F
| ^^F
|augmented 3rd
| augmented 3rd
|-
|-
| style="text-align:center;" | 13
| 13
| style="text-align:center;" | 445.714
| 445.714
| style="text-align:center;" | double-down 4th
| double-down 4th
| style="text-align:center;" | vv4
| vv4
| style="text-align:center;" | vvG
| vvG
|diminished 4th
| diminished 4th
|-
|-
| style="text-align:center;" | 14
| 14
| style="text-align:center;" | 480
| 480
| style="text-align:center;" | down 4th
| down 4th
| style="text-align:center;" | v4
| v4
| style="text-align:center;" | vG
| vG
|minor 4th
| minor 4th
|-
|-
| style="text-align:center;" | 15
| 15
| style="text-align:center;" |514.286
| 514.286
| style="text-align:center;" | 4th
| 4th
| style="text-align:center;" | 4
| 4
| style="text-align:center;" | G
| G
|major 4th
| major 4th
|-
|-
| style="text-align:center;" | 16
| 16
| style="text-align:center;" | 548.571
| 548.571
| style="text-align:center;" | up 4th
| up 4th
| style="text-align:center;" | ^4
| ^4
| style="text-align:center;" | ^G
| ^G
|augmented 4th
| augmented 4th
|-
|-
| style="text-align:center;" | 17
| 17
| style="text-align:center;" | 582.857
| 582.857
| style="text-align:center;" | double-up 4th
| double-up 4th
| style="text-align:center;" | ^^4
| ^^4
| style="text-align:center;" | ^^G
| ^^G
|minor tritone
| minor tritone
|-
|-
| style="text-align:center;" | 18
| 18
| style="text-align:center;" | 617.143
| 617.143
| style="text-align:center;" | double-down 5th
| double-down 5th
| style="text-align:center;" | vv5
| vv5
| style="text-align:center;" | vvA
| vvA
|major tritone
| major tritone
|-
|-
| style="text-align:center;" | 19
| 19
| style="text-align:center;" | 651.429
| 651.429
| style="text-align:center;" | down 5th
| down 5th
| style="text-align:center;" | v5
| v5
| style="text-align:center;" | vA
| vA
|diminished 5th
| diminished 5th
|-
|-
| style="text-align:center;" | 20
| 20
| style="text-align:center;" |685.714
| 685.714
| style="text-align:center;" | 5th
| 5th
| style="text-align:center;" | 5
| 5
| style="text-align:center;" | A
| A
|minor 5th
| minor 5th
|-
|-
| style="text-align:center;" | 21
| 21
| style="text-align:center;" | 720
| 720
| style="text-align:center;" | up 5th
| up 5th
| style="text-align:center;" | ^5
| ^5
| style="text-align:center;" | ^A
| ^A
|major 5th
| major 5th
|-
|-
| style="text-align:center;" | 22
| 22
| style="text-align:center;" | 754.286
| 754.286
| style="text-align:center;" | double-up 5th
| double-up 5th
| style="text-align:center;" | ^^5
| ^^5
| style="text-align:center;" | ^^A
| ^^A
|augmented 5th
| augmented 5th
|-
|-
| style="text-align:center;" | 23
| 23
| style="text-align:center;" | 788.571
| 788.571
| style="text-align:center;" | double-down 6th
| double-down 6th
| style="text-align:center;" | vv6
| vv6
| style="text-align:center;" | vvB
| vvB
|diminished 6th
| diminished 6th
|-
|-
| style="text-align:center;" | 24
| 24
| style="text-align:center;" | 822.857
| 822.857
| style="text-align:center;" | down 6th
| down 6th
| style="text-align:center;" | v6
| v6
| style="text-align:center;" | vB
| vB
|minor 6th
| minor 6th
|-
|-
| style="text-align:center;" | 25
| 25
| style="text-align:center;" |857.143
| 857.143
| style="text-align:center;" | 6th
| 6th
| style="text-align:center;" | 6
| 6
| style="text-align:center;" | B
| B
|neutral 6th
| neutral 6th
|-
|-
| style="text-align:center;" | 26
| 26
| style="text-align:center;" | 891.429
| 891.429
| style="text-align:center;" | up 6th
| up 6th
| style="text-align:center;" | ^6
| ^6
| style="text-align:center;" | ^B
| ^B
|major 6th
| major 6th
|-
|-
| style="text-align:center;" | 27
| 27
| style="text-align:center;" | 925.714
| 925.714
| style="text-align:center;" | double-up 6th
| double-up 6th
| style="text-align:center;" | ^^6
| ^^6
| style="text-align:center;" | ^^B
| ^^B
|augmented 6th
| augmented 6th
|-
|-
| style="text-align:center;" | 28
| 28
| style="text-align:center;" | 960
| 960
| style="text-align:center;" | double-down 7th
| double-down 7th
| style="text-align:center;" | vv7
| vv7
| style="text-align:center;" | vvC
| vvC
|diminished 7th
| diminished 7th
|-
|-
| style="text-align:center;" | 29
| 29
| style="text-align:center;" | 994.286
| 994.286
| style="text-align:center;" | down 7th
| down 7th
| style="text-align:center;" | v7
| v7
| style="text-align:center;" | vC
| vC
|minor 7th
| minor 7th
|-
|-
| style="text-align:center;" | 30
| 30
| style="text-align:center;" |1028.571
| 1028.571
| style="text-align:center;" | 7th
| 7th
| style="text-align:center;" | 7
| 7
| style="text-align:center;" | C
| C
|superminor 7th
| superminor 7th
|-
|-
| style="text-align:center;" | 31
| 31
| style="text-align:center;" | 1062.857
| 1062.857
| style="text-align:center;" | up 7th
| up 7th
| style="text-align:center;" | ^7
| ^7
| style="text-align:center;" | ^C
| ^C
|neutral 7th
| neutral 7th
|-
|-
| style="text-align:center;" | 32
| 32
| style="text-align:center;" | 1097.143
| 1097.143
| style="text-align:center;" | double-up 7th
| double-up 7th
| style="text-align:center;" | ^^7
| ^^7
| style="text-align:center;" | ^^C
| ^^C
|major 7th
| major 7th
|-
|-
| style="text-align:center;" | 33
| 33
| style="text-align:center;" | 1131.429
| 1131.429
| style="text-align:center;" | double-down 8ve
| double-down 8ve
| style="text-align:center;" | vv8
| vv8
| style="text-align:center;" | vvD
| vvD
|augmented 7th
| augmented 7th
|-
|-
| style="text-align:center;" | 34
| 34
| style="text-align:center;" | 1165.714
| 1165.714
| style="text-align:center;" | down 8ve
| down 8ve
| style="text-align:center;" | v8
| v8
| style="text-align:center;" | vD
| vD
|diminished 8ve
| diminished 8ve
|-
|-
| style="text-align:center;" | 35
| 35
| style="text-align:center;" | 1200
| 1200
| style="text-align:center;" | 8ve
| 8ve
| style="text-align:center;" | 8
| 8
| style="text-align:center;" | D
| D
|8ve
| 8ve
|}
|}


==Chord Names==
=== Chord Names ===
Ups and downs can be used to name 35edo chords. Because every interval is perfect, the quality can be omitted, and the words major, minor, augmented and diminished are never used. An up or down immediately after the chord root affects the 3rd, 6th, 7th, and/or the 11th (every other note of a stacked-3rds chord 6-1-3-5-7-9-11-13). Alterations are always enclosed in parentheses, additions never are.
Ups and downs can be used to name 35edo chords. Because every interval is perfect, the quality can be omitted, and the words major, minor, augmented and diminished are never used. An up or down immediately after the chord root affects the 3rd, 6th, 7th, and/or the 11th (every other note of a stacked-3rds chord 6-1-3-5-7-9-11-13). Alterations are always enclosed in parentheses, additions never are.


Line 291: Line 290:
For a more complete list, see [[Ups and Downs Notation#Chords and Chord Progressions|Ups and Downs Notation - Chords and Chord Progressions]].
For a more complete list, see [[Ups and Downs Notation#Chords and Chord Progressions|Ups and Downs Notation - Chords and Chord Progressions]].


=JI Intervals=
== JI Intervals ==
(Bolded ratio indicates that the ratio is most accurately tuned by the given 35-edo interval.)
(Bolded ratio indicates that the ratio is most accurately tuned by the given 35edo interval.)


{| class="wikitable"
{| class="wikitable"
|-
|-
! | Degrees
| Degrees
! | Cents value
| Cents value
! | Ratios in 2.5.7.11.17 subgroup
| Ratios in 2.5.7.11.17 subgroup
! | Ratios with flat 3
| Ratios with flat 3
! | Ratios with sharp 3
| Ratios with sharp 3
! | Ratios with best 9
| Ratios with best 9
|-
|-
| | 0
| 0
| 0.000
| 0.000
| | '''1/1'''
| '''1/1'''
| | (see comma table)
| (see comma table)
| |  
|  
| |  
|  
|-
|-
| | 1
| 1
| | 34.286
| 34.286
| | '''50/49''', '''121/119''', 33/32
| '''50/49''', '''121/119''', 33/32
| | '''36/35'''
| '''36/35'''
| | 25/24
| 25/24
| | '''81/80'''
| '''81/80'''
|-
|-
| | 2
| 2
| | 68.571
| 68.571
| | 128/125
| 128/125
| | '''25/24'''
| '''25/24'''
| | 81/80
| 81/80
| |  
|  
|-
|-
| | 3
| 3
| | 102.857
| 102.857
| | '''17/16'''
| '''17/16'''
| | '''15/14'''
| '''15/14'''
| | '''16/15'''
| '''16/15'''
| | '''18/17'''
| '''18/17'''
|-
|-
| | 4
| 4
| | 137.143
| 137.143
| |  
|  
| | '''12/11''', 16/15
| '''12/11''', 16/15
| |  
|  
| |  
|  
|-
|-
| | 5
| 5
| |171.429
|171.429
| | '''11/10'''
| '''11/10'''
| |  
|  
| | 12/11
| 12/11
| | '''10/9'''
| '''10/9'''
|-
|-
| | 6
| 6
| | 205.714
| 205.714
| |  
|  
| |  
|  
| |  
|  
| | '''9/8'''
| '''9/8'''
|-
|-
| | 7
| 7
| | 240
| 240
| | '''8/7'''
| '''8/7'''
| |  
|  
| | 7/6
| 7/6
| |  
|  
|-
|-
| | 8
| 8
| | 274.286
| 274.286
| | '''20/17'''
| '''20/17'''
| | '''7/6'''
| '''7/6'''
| |  
|  
| |  
|  
|-
|-
| | 9
| 9
| | 308.571
| 308.571
| |  
|  
| | '''6/5'''
| '''6/5'''
| |  
|  
| |  
|  
|-
|-
| | 10
| 10
| |342.857
|342.857
| | '''17/14'''
| '''17/14'''
| |  
|  
| | 6/5
| 6/5
| | '''11/9'''
| '''11/9'''
|-
|-
| | 11
| 11
| | 377.143
| 377.143
| | '''5/4'''
| '''5/4'''
| |  
|  
| |  
|  
| |  
|  
|-
|-
| | 12
| 12
| | 411.429
| 411.429
| | '''14/11'''
| '''14/11'''
| |  
|  
| |  
|  
| |  
|  
|-
|-
| | 13
| 13
| | 445.714
| 445.714
| | '''22/17''', 32/25
| '''22/17''', 32/25
| |  
|  
| |  
|  
| | '''9/7'''
| '''9/7'''
|-
|-
| | 14
| 14
| | 480
| 480
| |  
|  
| |  
|  
| | 4/3, '''21/16'''
| 4/3, '''21/16'''
| |  
|  
|-
|-
| | 15
| 15
| |514.286
|514.286
| |  
|  
| | '''4/3'''
| '''4/3'''
| |  
|  
| |  
|  
|-
|-
| | 16
| 16
| | 548.571
| 548.571
| | '''11/8'''
| '''11/8'''
| |  
|  
| |  
|  
| |  
|  
|-
|-
| | 17
| 17
| | 582.857
| 582.857
| | '''7/5'''
| '''7/5'''
| | '''24/17'''
| '''24/17'''
| | 17/12
| 17/12
| |  
|  
|-
|-
| | 18
| 18
| | 617.143
| 617.143
| | '''10/7'''
| '''10/7'''
| | '''17/12'''
| '''17/12'''
| | 24/17
| 24/17
| |  
|  
|-
|-
| | 19
| 19
| | 651.429
| 651.429
| | '''16/11'''
| '''16/11'''
| |  
|  
| |  
|  
| |  
|  
|-
|-
| | 20
| 20
| |685.714
|685.714
| |  
|  
| | '''3/2'''
| '''3/2'''
| |  
|  
| |  
|  
|-
|-
| | 21
| 21
| | 720
| 720
| |  
|  
| |  
|  
| | 3/2, '''32/21'''
| 3/2, '''32/21'''
| |  
|  
|-
|-
| | 22
| 22
| | 754.286
| 754.286
| | '''17/11''', 25/16
| '''17/11''', 25/16
| |  
|  
| |  
|  
| | '''14/9'''
| '''14/9'''
|-
|-
| | 23
| 23
| | 788.571
| 788.571
| | '''11/7'''
| '''11/7'''
| |  
|  
| |  
|  
| |  
|  
|-
|-
| | 24
| 24
| | 822.857
| 822.857
| | '''8/5'''
| '''8/5'''
| |  
|  
| |  
|  
| |  
|  
|-
|-
| | 25
| 25
| |857.143
|857.143
| | '''28/17'''
| '''28/17'''
| |  
|  
| | 5/3
| 5/3
| | '''18/11'''
| '''18/11'''
|-
|-
| | 26
| 26
| | 891.429
| 891.429
| |  
|  
| | '''5/3'''
| '''5/3'''
| |  
|  
| |  
|  
|-
|-
| | 27
| 27
| | 925.714
| 925.714
| | '''17/10'''
| '''17/10'''
| | '''12/7'''
| '''12/7'''
| |  
|  
| |  
|  
|-
|-
| | 28
| 28
| | 960
| 960
| | '''7/4'''
| '''7/4'''
| |  
|  
| |  
|  
| |  
|  
|-
|-
| | 29
| 29
| | 994.286
| 994.286
| |  
|  
| |  
|  
| |  
|  
| | '''16/9'''
| '''16/9'''
|-
|-
| | 30
| 30
| |1028.571
|1028.571
| | '''20/11'''
| '''20/11'''
| |  
|  
| |  
|  
| | '''9/5'''
| '''9/5'''
|-
|-
| | 31
| 31
| | 1062.857
| 1062.857
| |  
|  
| | '''11/6''', 15/8
| '''11/6''', 15/8
| |  
|  
| |  
|  
|-
|-
| | 32
| 32
| | 1097.143
| 1097.143
| | '''32/17'''
| '''32/17'''
| | '''28/15'''
| '''28/15'''
| | '''15/8'''
| '''15/8'''
| | '''17/9'''
| '''17/9'''
|-
|-
| | 33
| 33
| | 1131.429
| 1131.429
| |  
|  
| |  
|  
| |  
|  
| |  
|  
|-
|-
| | 34
| 34
| | 1165.714
| 1165.714
| |  
|  
| |  
|  
| |  
|  
| |  
|  
|-
|-
|3
|3
Line 622: Line 621:
|}
|}


=Rank two temperaments=
== Rank-2 temperaments ==
 
{| class="wikitable"
{| class="wikitable"
|-
|-
Line 719: Line 717:
|}
|}


=Scales=
== Scales ==
A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a [[MOS]] of 3L2s: 9 4 9 9 4.
A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a [[MOS]] of 3L2s: 9 4 9 9 4.


=Commas=
== Commas ==
35 EDO [[tempers out]] the following [[comma]]s. (Note: This assumes the [[val]] {{val| 35 55 81 98 121 130 }}.)
35 EDO [[tempers out]] the following [[comma]]s. (Note: This assumes the [[val]] {{val| 35 55 81 98 121 130 }}.)


Line 806: Line 804:
<references/>
<references/>


=Music=
== Music ==
 
* [http://soonlabel.com/xenharmonic/archives/2348 Little Prelude &amp; Fugue, "The Bijingle" by Claudi Meneghin]
* [http://soonlabel.com/xenharmonic/archives/2348 Little Prelude &amp; Fugue, "The Bijingle" by Claudi Meneghin]
* [http://www.archive.org/download/Transcendissonance/05Self-destructingMechanicalForest-CityOfTheAsleep.mp3 Self-Destructing Mechanical Forest] by Chuckles McGee (in Secund[9])
* [http://www.archive.org/download/Transcendissonance/05Self-destructingMechanicalForest-CityOfTheAsleep.mp3 Self-Destructing Mechanical Forest] by Chuckles McGee (in Secund[9])
* [https://youtu.be/07-wj6BaTOw "G2 Manifold"] by E8 Heterotic (uses a combination of 5-EDO and 7-EDO, which can be classified as a 35-EDO subset.)
* [https://youtu.be/07-wj6BaTOw "G2 Manifold"] by E8 Heterotic (uses a combination of 5-EDO and 7-EDO, which can be classified as a 35-EDO subset.)


[[Category:35edo]]
[[Category:35edo]]
[[Category:Equal divisions of the octave]]
[[Category:Equal divisions of the octave|##]] <!-- 2-digit number -->
[[Category:listen]]
[[Category:Listen]]