3L 4s: Difference between revisions

Wikispaces>Andrew_Heathwaite
**Imported revision 201369348 - Original comment: **
Wikispaces>keenanpepper
**Imported revision 222633306 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2011-02-13 17:10:22 UTC</tt>.<br>
: This revision was by author [[User:keenanpepper|keenanpepper]] and made on <tt>2011-04-25 05:07:08 UTC</tt>.<br>
: The original revision id was <tt>201369348</tt>.<br>
: The original revision id was <tt>222633306</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 19: Line 19:
|| L s s L s L s || kleeth ||
|| L s s L s L s || kleeth ||
|| s s L s L s L || led ||
|| s s L s L s L || led ||
The two notable harmonic entropy minima with this pattern are neutral third scales ("dicot" / "hemififth" / "mohajira") where two generators make a 3/2, and [[Magic family|magic]], where the generator is a 5/4 but five of them make a 3/1.
||||||||||||||~ generator ||~ g ||~ 2g ||~ 3g ||~ 4g (-1200) ||~ comments ||
|| 1\3 ||  ||  ||  ||  ||  ||  || 400.000 || 800.000 || 1200.000 || 400.000 ||=  ||
||  ||  ||  ||  ||  || 7\22 ||  || 381.818 ||  ||  ||  ||=  ||
||  ||  ||  ||  ||  ||  || 13\41 || 380.488 ||  ||  ||  ||= Magic is around here ||
||  ||  ||  ||  || 6\19 ||  ||  || 378.947 || 757.895 || 1136.842 || 315.789 ||=  ||
||  ||  ||  || 5\16 ||  ||  ||  || 375.000 || 750.000 || 1125.000 || 300.000 ||=  ||
||  ||  ||  ||  || 9\29 ||  ||  || 372.414 || 744.828 || 1117.241 || 289.655 ||=  ||
||  ||  || 4\13 ||  ||  ||  ||  || 369.231 || 738.462 || 1107.692 || 276.923 ||=  ||
||  ||  ||  ||  || 11\36 ||  ||  || 366.667 || 733.333 || 1100.000 || 266.667 ||=  ||
||  ||  ||  || 7\23 ||  ||  ||  || 365.217 || 730.435 || 1095.652 || 260.870 ||=  ||
||  ||  ||  ||  || 10\33 ||  ||  || 363.636 || 727.272 || 1090.909 || 254.545 ||=  ||
||  || 3\10 ||  ||  ||  ||  ||  || 360.000 || 720.000 || 1080.000 || 240.000 ||= Boundary of propriety (generators
smaller than this are proper) ||
||  ||  ||  ||  || 11\37 ||  ||  || 356.757 || 713.514 || 1080.270 || 227.027 ||=  ||
||  ||  ||  || 8\27 ||  ||  ||  || 355.556 || 711.111 || 1066.667 || 222.222 ||=  ||
||  ||  ||  ||  || 13\44 ||  ||  || 354.545 || 709.091 || 1063.636 || 218.182 ||=  ||
||  ||  || 5\17 ||  ||  ||  ||  || 352.941 || 705.882 || 1058.824 || 211.765 ||=  ||
||  ||  ||  ||  || 12\41 ||  ||  || 351.220 || 702.439 || 1053.659 || 204.878 ||= Neutral thirds scale /
Mohajira is around here ||
||  ||  ||  || 7\24 ||  ||  ||  || 350.000 || 700.000 || 1050.000 || 200.000 ||=  ||
||  ||  ||  ||  || 9\31 ||  ||  || 348.387 || 696.774 || 1045.161 || 193.548 ||=  ||
|| 2\7 ||  ||  ||  ||  ||  ||  || 342.847 || 685.714 || 1028.571 || 171.429 ||=  ||


 
3\10 on this chart represents a dividing line between "neutral third scales" on the bottom (eg. [[17edo neutral scale]]), and something else I don't have a name for yet on the top, with [[10edo]] standing in between. (What do you call this region, dear reader?) Of course, magic is in the top half, but it's a pretty specific scale and doesn't describe the whole range. MOS-wise, the neutral third scales, after three more generations, make MOS [[7L 3s]] ("unfair mosh"); the other scales make MOS [[3L 7s]] ("fair mosh").
One can build a continuum of equal-tempered scales between 1\3 and 2\7 by taking "freshman sums," adding together the numerators, then adding together the denominators.
 
 
 
||||||||||~ generator || g || 2g || 3g || 4g (-1200) ||
|| 1\3 ||  ||  ||  ||  || 400.000 || 800.000 || 1200.000 || 400.000 ||  ||
||  ||  ||  ||  || 6\19 || 378.947 || 757.895 || 1136.842 || 315.789 ||  ||
||  ||  ||  || 5\16 ||  || 375.000 || 750.000 || 1125.000 || 300.000 ||  ||
||  ||  ||  ||  || 9\29 || 372.414 || 744.828 || 1117.241 || 289.655 ||  ||
||  ||  || 4\13 ||  ||  || 369.231 || 738.462 || 1107.692 || 276.923 ||  ||
||  ||  ||  ||  || 11\36 || 366.667 || 733.333 || 1100.000 || 266.667 ||  ||
||  ||  ||  || 7\23 ||  || 365.217 || 730.435 || 1095.652 || 260.870 ||  ||
||  ||  ||  ||  || 10\33 || 363.636 || 727.272 || 1090.909 || 254.545 ||  ||
||  || 3\10 ||  ||  ||  || 360.000 || 720.000 || 1080.000 || 240.000 ||  ||
||  ||  ||  ||  || 11\37 || 356.757 || 713.514 || 1080.270 || 227.027 ||  ||
||  ||  ||  || 8\27 ||  || 355.556 || 711.111 || 1066.667 || 222.222 ||  ||
||  ||  ||  ||  || 13\44 || 354.545 || 709.091 || 1063.636 || 218.182 ||  ||
||  ||  || 5\17 ||  ||  || 352.941 || 705.882 || 1058.824 || 211.765 ||  ||
||  ||  ||  ||  || 12\41 || 351.220 || 702.439 || 1053.659 || 204.878 ||  ||
||  ||  ||  || 7\24 ||  || 350.000 || 700.000 || 1050.000 || 200.000 ||  ||
||  ||  ||  ||  || 9\31 || 348.387 || 696.774 || 1045.161 || 193.548 ||  ||
|| 2\7 ||  ||  ||  ||  || 342.847 || 685.714 || 1028.571 || 171.429 ||  ||
 
3\10 on this chart represents a dividing line between "neutral third scales" on the bottom (eg. [[17edo neutral scale]]), and something else I don't have a name for yet on the top, with [[10edo]] standing in between. (What do you call this region, dear reader?) MOS-wise, the neutral third scales, after three more generations, make MOS [[7L 3s]] ("unfair mosh"); the other scales make MOS [[3L 7s]] ("fair mosh").


In "neural third scale territory," the generators are all "neutral thirds," and two of them make an approximation of the "perfect fifth." Additionally, the L of the scale is somewhere around a "whole tone" and the s of the scale is somewhere around a "neutral tone".
In "neural third scale territory," the generators are all "neutral thirds," and two of them make an approximation of the "perfect fifth." Additionally, the L of the scale is somewhere around a "whole tone" and the s of the scale is somewhere around a "neutral tone".
Line 103: Line 102:
&lt;/table&gt;
&lt;/table&gt;


&lt;br /&gt;
The two notable harmonic entropy minima with this pattern are neutral third scales (&amp;quot;dicot&amp;quot; / &amp;quot;hemififth&amp;quot; / &amp;quot;mohajira&amp;quot;) where two generators make a 3/2, and &lt;a class="wiki_link" href="/Magic%20family"&gt;magic&lt;/a&gt;, where the generator is a 5/4 but five of them make a 3/1.&lt;br /&gt;
&lt;br /&gt;
One can build a continuum of equal-tempered scales between 1\3 and 2\7 by taking &amp;quot;freshman sums,&amp;quot; adding together the numerators, then adding together the denominators.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;




&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th colspan="5"&gt;generator&lt;br /&gt;
         &lt;th colspan="7"&gt;generator&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;g&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;2g&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;3g&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;4g (-1200)&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;comments&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
        &lt;td&gt;g&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2g&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3g&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4g (-1200)&lt;br /&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;1\3&lt;br /&gt;
         &lt;td&gt;1\3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 142: Line 142:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;400.000&lt;br /&gt;
         &lt;td&gt;400.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;381.818&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13\41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;380.488&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Magic is around here&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 156: Line 208:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;6\19&lt;br /&gt;
         &lt;td&gt;6\19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;378.947&lt;br /&gt;
         &lt;td&gt;378.947&lt;br /&gt;
Line 165: Line 221:
         &lt;td&gt;315.789&lt;br /&gt;
         &lt;td&gt;315.789&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 176: Line 232:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;5\16&lt;br /&gt;
         &lt;td&gt;5\16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 187: Line 247:
         &lt;td&gt;300.000&lt;br /&gt;
         &lt;td&gt;300.000&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 200: Line 260:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;9\29&lt;br /&gt;
         &lt;td&gt;9\29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;372.414&lt;br /&gt;
         &lt;td&gt;372.414&lt;br /&gt;
Line 209: Line 273:
         &lt;td&gt;289.655&lt;br /&gt;
         &lt;td&gt;289.655&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 218: Line 282:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;4\13&lt;br /&gt;
         &lt;td&gt;4\13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 231: Line 299:
         &lt;td&gt;276.923&lt;br /&gt;
         &lt;td&gt;276.923&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 244: Line 312:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;11\36&lt;br /&gt;
         &lt;td&gt;11\36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;366.667&lt;br /&gt;
         &lt;td&gt;366.667&lt;br /&gt;
Line 253: Line 325:
         &lt;td&gt;266.667&lt;br /&gt;
         &lt;td&gt;266.667&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 264: Line 336:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;7\23&lt;br /&gt;
         &lt;td&gt;7\23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 275: Line 351:
         &lt;td&gt;260.870&lt;br /&gt;
         &lt;td&gt;260.870&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 288: Line 364:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;10\33&lt;br /&gt;
         &lt;td&gt;10\33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;363.636&lt;br /&gt;
         &lt;td&gt;363.636&lt;br /&gt;
Line 297: Line 377:
         &lt;td&gt;254.545&lt;br /&gt;
         &lt;td&gt;254.545&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 304: Line 384:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;3\10&lt;br /&gt;
         &lt;td&gt;3\10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 319: Line 403:
         &lt;td&gt;240.000&lt;br /&gt;
         &lt;td&gt;240.000&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Boundary of propriety (generators&lt;br /&gt;
smaller than this are proper)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 332: Line 417:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;11\37&lt;br /&gt;
         &lt;td&gt;11\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;356.757&lt;br /&gt;
         &lt;td&gt;356.757&lt;br /&gt;
Line 341: Line 430:
         &lt;td&gt;227.027&lt;br /&gt;
         &lt;td&gt;227.027&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 352: Line 441:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;8\27&lt;br /&gt;
         &lt;td&gt;8\27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 363: Line 456:
         &lt;td&gt;222.222&lt;br /&gt;
         &lt;td&gt;222.222&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 376: Line 469:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;13\44&lt;br /&gt;
         &lt;td&gt;13\44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;354.545&lt;br /&gt;
         &lt;td&gt;354.545&lt;br /&gt;
Line 385: Line 482:
         &lt;td&gt;218.182&lt;br /&gt;
         &lt;td&gt;218.182&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 394: Line 491:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;5\17&lt;br /&gt;
         &lt;td&gt;5\17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 407: Line 508:
         &lt;td&gt;211.765&lt;br /&gt;
         &lt;td&gt;211.765&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 420: Line 521:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;12\41&lt;br /&gt;
         &lt;td&gt;12\41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;351.220&lt;br /&gt;
         &lt;td&gt;351.220&lt;br /&gt;
Line 429: Line 534:
         &lt;td&gt;204.878&lt;br /&gt;
         &lt;td&gt;204.878&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Neutral thirds scale&lt;br /&gt;
Mohajira is around here&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 440: Line 546:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;7\24&lt;br /&gt;
         &lt;td&gt;7\24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 451: Line 561:
         &lt;td&gt;200.000&lt;br /&gt;
         &lt;td&gt;200.000&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 464: Line 574:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;9\31&lt;br /&gt;
         &lt;td&gt;9\31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;348.387&lt;br /&gt;
         &lt;td&gt;348.387&lt;br /&gt;
Line 473: Line 587:
         &lt;td&gt;193.548&lt;br /&gt;
         &lt;td&gt;193.548&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;2\7&lt;br /&gt;
         &lt;td&gt;2\7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 495: Line 613:
         &lt;td&gt;171.429&lt;br /&gt;
         &lt;td&gt;171.429&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 501: Line 619:


&lt;br /&gt;
&lt;br /&gt;
3\10 on this chart represents a dividing line between &amp;quot;neutral third scales&amp;quot; on the bottom (eg. &lt;a class="wiki_link" href="/17edo%20neutral%20scale"&gt;17edo neutral scale&lt;/a&gt;), and something else I don't have a name for yet on the top, with &lt;a class="wiki_link" href="/10edo"&gt;10edo&lt;/a&gt; standing in between. (What do you call this region, dear reader?) MOS-wise, the neutral third scales, after three more generations, make MOS &lt;a class="wiki_link" href="/7L%203s"&gt;7L 3s&lt;/a&gt; (&amp;quot;unfair mosh&amp;quot;); the other scales make MOS &lt;a class="wiki_link" href="/3L%207s"&gt;3L 7s&lt;/a&gt; (&amp;quot;fair mosh&amp;quot;).&lt;br /&gt;
3\10 on this chart represents a dividing line between &amp;quot;neutral third scales&amp;quot; on the bottom (eg. &lt;a class="wiki_link" href="/17edo%20neutral%20scale"&gt;17edo neutral scale&lt;/a&gt;), and something else I don't have a name for yet on the top, with &lt;a class="wiki_link" href="/10edo"&gt;10edo&lt;/a&gt; standing in between. (What do you call this region, dear reader?) Of course, magic is in the top half, but it's a pretty specific scale and doesn't describe the whole range. MOS-wise, the neutral third scales, after three more generations, make MOS &lt;a class="wiki_link" href="/7L%203s"&gt;7L 3s&lt;/a&gt; (&amp;quot;unfair mosh&amp;quot;); the other scales make MOS &lt;a class="wiki_link" href="/3L%207s"&gt;3L 7s&lt;/a&gt; (&amp;quot;fair mosh&amp;quot;).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
In &amp;quot;neural third scale territory,&amp;quot; the generators are all &amp;quot;neutral thirds,&amp;quot; and two of them make an approximation of the &amp;quot;perfect fifth.&amp;quot; Additionally, the L of the scale is somewhere around a &amp;quot;whole tone&amp;quot; and the s of the scale is somewhere around a &amp;quot;neutral tone&amp;quot;.&lt;br /&gt;
In &amp;quot;neural third scale territory,&amp;quot; the generators are all &amp;quot;neutral thirds,&amp;quot; and two of them make an approximation of the &amp;quot;perfect fifth.&amp;quot; Additionally, the L of the scale is somewhere around a &amp;quot;whole tone&amp;quot; and the s of the scale is somewhere around a &amp;quot;neutral tone&amp;quot;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
In the as-yet unnamed northern territory, the generators are major thirds (including some very flat ones), and two generators are definitely sharp of a perfect fifth. L ranges from a &amp;quot;supermajor second&amp;quot; to a &amp;quot;major third&amp;quot; and s is a &amp;quot;semitone&amp;quot; or smaller.&lt;/body&gt;&lt;/html&gt;</pre></div>
In the as-yet unnamed northern territory, the generators are major thirds (including some very flat ones), and two generators are definitely sharp of a perfect fifth. L ranges from a &amp;quot;supermajor second&amp;quot; to a &amp;quot;major third&amp;quot; and s is a &amp;quot;semitone&amp;quot; or smaller.&lt;/body&gt;&lt;/html&gt;</pre></div>