35edo: Difference between revisions

Wikispaces>phylingual
**Imported revision 329071004 - Original comment: **
Wikispaces>phylingual
**Imported revision 329083054 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-05-02 22:42:22 UTC</tt>.<br>
: This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-05-02 23:11:31 UTC</tt>.<br>
: The original revision id was <tt>329071004</tt>.<br>
: The original revision id was <tt>329083054</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 12: Line 12:
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[macrotonal edos]]: [[5edo]] and [[7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢.
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[macrotonal edos]]: [[5edo]] and [[7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢.


35edo is a consistent 2.3.5.7.11.17 [[Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup temperament, because of the accuracy of 9 and the flatness of all other subgroup generators.
35edo can represent the 2.3.5.7.11.17 [[Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore it is a very versatile whitewood tuning.


A good beggining for start to play 35-EDO is with the Sub-diatonic scale (Pentadiatonic scale), that is a [[MOS]] of 3L2s: L s L L s; in 35-EDO is: 9 4 9 9 4
A good beggining for start to play 35-EDO is with the Sub-diatonic scale (Pentadiatonic scale), that is a [[MOS]] of 3L2s: L s L L s; in 35-EDO is: 9 4 9 9 4


==Intervals==  
==Intervals==  
|| Degrees of 35-EDO || Cents value ||
|| Degrees of 35-EDO || Cents value || Ratios in 2.3.5.7.11.17 subgroup || Ratios in 2.9.5.7.11.17 subgroup ||
|| 0 || 0 ||
|| 0 || 0 || 1/1 ||  ||
|| 1 || 34,29 ||
|| 1 || 34,29 ||  ||  ||
|| 2 || 68,57 ||
|| 2 || 68,57 ||  ||  ||
|| 3 || 102,86 ||
|| 3 || 102,86 || 17/16 || 17/16, 18/17 ||
|| 4 || 137,14 ||
|| 4 || 137,14 || 12/11 ||  ||
|| 5 || 171,43 ||
|| 5 || 171,43 || 11/10 || 10/9, 11/10 ||
|| 6 || 205,71 ||
|| 6 || 205,71 ||  || 9/8 ||
|| 7 || 240 ||
|| 7 || 240 || 8/7 || 8/7 ||
|| 8 || 274,29 ||
|| 8 || 274,29 || 7/6, 20/17 || 20/17 ||
|| 9 || 308,57 ||
|| 9 || 308,57 || 6/5 ||  ||
|| 10 || 342,86 ||
|| 10 || 342,86 || 17/14 || 11/9, 17/14 ||
|| 11 || 377,14 ||
|| 11 || 377,14 || 5/4 || 5/4 ||
|| 12 || 411,43 ||
|| 12 || 411,43 || 14/11 || 14/11 ||
|| 13 || 445,71 ||
|| 13 || 445,71 || 22/17 || 9/7, 22/17 ||
|| 14 || 480 ||
|| 14 || 480 ||  ||  ||
|| 15 || 514,29 ||
|| 15 || 514,29 || 4/3 ||  ||
|| 16 || 548,57 ||
|| 16 || 548,57 || 11/8 || 11/8 ||
|| 17 || 582,86 ||
|| 17 || 582,86 || 7/5, 24/17 || 7/8 ||
|| 18 || 617,14 ||
|| 18 || 617,14 || 10/7, 17/12 || 10/7 ||
|| 19 || 651,43 ||
|| 19 || 651,43 || 16/11 || 16/11 ||
|| 20 || 685,71 ||
|| 20 || 685,71 || 3/2 ||  ||
|| 21 || 720 ||
|| 21 || 720 ||  ||  ||
|| 22 || 754,29 ||
|| 22 || 754,29 || 17/11 || 14/9, 17/11 ||
|| 23 || 788,57 ||
|| 23 || 788,57 || 11/7 || 11/7 ||
|| 24 || 822,86 ||
|| 24 || 822,86 || 8/5 || 8/5 ||
|| 25 || 857,15 ||
|| 25 || 857,15 ||  || 18/11 ||
|| 26 || 891,43 ||
|| 26 || 891,43 || 5/3 ||  ||
|| 27 || 925,71 ||
|| 27 || 925,71 || 12/7, 17/10 || 17/10 ||
|| 28 || 960 ||
|| 28 || 960 || 7/4 || 7/4 ||
|| 29 || 994,29 ||
|| 29 || 994,29 ||  || 16/9 ||
|| 30 || 1028,57 ||
|| 30 || 1028,57 || 20/11 || 20/11, 9/5 ||
|| 31 || 1062,86 ||
|| 31 || 1062,86 || 11/6 ||  ||
|| 32 || 1097,14 ||
|| 32 || 1097,14 || 32/17 || 32/17, 17/9 ||
|| 33 || 1131,43 ||
|| 33 || 1131,43 ||  ||  ||
|| 34 || 1165,71 ||</pre></div>
|| 34 || 1165,71 ||  ||  ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;35edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x35 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #ff4100;"&gt;35 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;35edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x35 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #ff4100;"&gt;35 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
Line 60: Line 60:
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic &lt;a class="wiki_link" href="/macrotonal%20edos"&gt;macrotonal edos&lt;/a&gt;: &lt;a class="wiki_link" href="/5edo"&gt;5edo&lt;/a&gt; and &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢.&lt;br /&gt;
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic &lt;a class="wiki_link" href="/macrotonal%20edos"&gt;macrotonal edos&lt;/a&gt;: &lt;a class="wiki_link" href="/5edo"&gt;5edo&lt;/a&gt; and &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
35edo is a consistent 2.3.5.7.11.17 &lt;a class="wiki_link" href="/Just%20intonation%20subgroups"&gt;subgroup&lt;/a&gt; and 2.9.5.7.11.17 subgroup temperament, because of the accuracy of 9 and the flatness of all other subgroup generators.&lt;br /&gt;
35edo can represent the 2.3.5.7.11.17 &lt;a class="wiki_link" href="/Just%20intonation%20subgroups"&gt;subgroup&lt;/a&gt; and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore it is a very versatile whitewood tuning.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
A good beggining for start to play 35-EDO is with the Sub-diatonic scale (Pentadiatonic scale), that is a &lt;a class="wiki_link" href="/MOS"&gt;MOS&lt;/a&gt; of 3L2s: L s L L s; in 35-EDO is: 9 4 9 9 4&lt;br /&gt;
A good beggining for start to play 35-EDO is with the Sub-diatonic scale (Pentadiatonic scale), that is a &lt;a class="wiki_link" href="/MOS"&gt;MOS&lt;/a&gt; of 3L2s: L s L L s; in 35-EDO is: 9 4 9 9 4&lt;br /&gt;
Line 72: Line 72:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Cents value&lt;br /&gt;
         &lt;td&gt;Cents value&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Ratios in 2.3.5.7.11.17 subgroup&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Ratios in 2.9.5.7.11.17 subgroup&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 78: Line 82:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;0&lt;br /&gt;
         &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 84: Line 92:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;34,29&lt;br /&gt;
         &lt;td&gt;34,29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 90: Line 102:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;68,57&lt;br /&gt;
         &lt;td&gt;68,57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 96: Line 112:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;102,86&lt;br /&gt;
         &lt;td&gt;102,86&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/16, 18/17&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 102: Line 122:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;137,14&lt;br /&gt;
         &lt;td&gt;137,14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 108: Line 132:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;171,43&lt;br /&gt;
         &lt;td&gt;171,43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/9, 11/10&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 114: Line 142:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;205,71&lt;br /&gt;
         &lt;td&gt;205,71&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/8&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 120: Line 152:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;240&lt;br /&gt;
         &lt;td&gt;240&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/7&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 126: Line 162:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;274,29&lt;br /&gt;
         &lt;td&gt;274,29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/6, 20/17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/17&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 132: Line 172:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;308,57&lt;br /&gt;
         &lt;td&gt;308,57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 138: Line 182:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;342,86&lt;br /&gt;
         &lt;td&gt;342,86&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/9, 17/14&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 144: Line 192:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;377,14&lt;br /&gt;
         &lt;td&gt;377,14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/4&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 150: Line 202:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;411,43&lt;br /&gt;
         &lt;td&gt;411,43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/11&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 156: Line 212:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;445,71&lt;br /&gt;
         &lt;td&gt;445,71&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;22/17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/7, 22/17&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 162: Line 222:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;480&lt;br /&gt;
         &lt;td&gt;480&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 168: Line 232:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;514,29&lt;br /&gt;
         &lt;td&gt;514,29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 174: Line 242:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;548,57&lt;br /&gt;
         &lt;td&gt;548,57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/8&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 180: Line 252:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;582,86&lt;br /&gt;
         &lt;td&gt;582,86&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/5, 24/17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/8&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 186: Line 262:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;617,14&lt;br /&gt;
         &lt;td&gt;617,14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/7, 17/12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/7&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 192: Line 272:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;651,43&lt;br /&gt;
         &lt;td&gt;651,43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/11&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 198: Line 282:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;685,71&lt;br /&gt;
         &lt;td&gt;685,71&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 204: Line 292:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;720&lt;br /&gt;
         &lt;td&gt;720&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 210: Line 302:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;754,29&lt;br /&gt;
         &lt;td&gt;754,29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/9, 17/11&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 216: Line 312:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;788,57&lt;br /&gt;
         &lt;td&gt;788,57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/7&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 222: Line 322:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;822,86&lt;br /&gt;
         &lt;td&gt;822,86&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/5&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 228: Line 332:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;857,15&lt;br /&gt;
         &lt;td&gt;857,15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18/11&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 234: Line 342:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;891,43&lt;br /&gt;
         &lt;td&gt;891,43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 240: Line 352:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;925,71&lt;br /&gt;
         &lt;td&gt;925,71&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/7, 17/10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/10&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 246: Line 362:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;960&lt;br /&gt;
         &lt;td&gt;960&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/4&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 252: Line 372:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;994,29&lt;br /&gt;
         &lt;td&gt;994,29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/9&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 258: Line 382:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1028,57&lt;br /&gt;
         &lt;td&gt;1028,57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/11, 9/5&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 264: Line 392:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1062,86&lt;br /&gt;
         &lt;td&gt;1062,86&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 270: Line 402:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1097,14&lt;br /&gt;
         &lt;td&gt;1097,14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;32/17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;32/17, 17/9&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 276: Line 412:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1131,43&lt;br /&gt;
         &lt;td&gt;1131,43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 282: Line 422:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1165,71&lt;br /&gt;
         &lt;td&gt;1165,71&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;