35edo: Difference between revisions

Wikispaces>phylingual
**Imported revision 330639234 - Original comment: **
Wikispaces>phylingual
**Imported revision 331379656 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-05-06 09:19:06 UTC</tt>.<br>
: This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-05-07 17:51:26 UTC</tt>.<br>
: The original revision id was <tt>330639234</tt>.<br>
: The original revision id was <tt>331379656</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">35-tET or 35-[[xenharmonic/edo|EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[xenharmonic/cent|34.29¢]] each.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">35-tET or 35-[[xenharmonic/edo|EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[xenharmonic/cent|34.29¢]] each.


As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[xenharmonic/macrotonal edos|macrotonal edos]]: [[xenharmonic/5edo|5edo]] and [[xenharmonic/7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 [[xenharmonic/Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore [[xenharmonic/22edo|22edo]]'s
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[xenharmonic/macrotonal edos|macrotonal edos]]: [[xenharmonic/5edo|5edo]] and [[xenharmonic/7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 [[xenharmonic/Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators (7/5 and 17/11 stand out, having less than 1 cent error). Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore [[xenharmonic/22edo|22edo]]'s
more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for [[xenharmonic/Greenwoodmic temperaments|greenwood]] and [[xenharmonic/Greenwoodmic temperaments#Secund|secund]] temperaments.
more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for [[xenharmonic/Greenwoodmic temperaments|greenwood]] and [[xenharmonic/Greenwoodmic temperaments#Secund|secund]] temperaments.


Line 95: Line 95:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;35edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;35-tET or 35-&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo"&gt;EDO&lt;/a&gt; refers to a tuning system which divides the octave into 35 steps of approximately &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;34.29¢&lt;/a&gt; each.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;35edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;35-tET or 35-&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo"&gt;EDO&lt;/a&gt; refers to a tuning system which divides the octave into 35 steps of approximately &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;34.29¢&lt;/a&gt; each.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos"&gt;macrotonal edos&lt;/a&gt;: &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo"&gt;5edo&lt;/a&gt; and &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo"&gt;7edo&lt;/a&gt;. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups"&gt;subgroup&lt;/a&gt; and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/22edo"&gt;22edo&lt;/a&gt;'s&lt;br /&gt;
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos"&gt;macrotonal edos&lt;/a&gt;: &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo"&gt;5edo&lt;/a&gt; and &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo"&gt;7edo&lt;/a&gt;. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups"&gt;subgroup&lt;/a&gt; and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators (7/5 and 17/11 stand out, having less than 1 cent error). Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/22edo"&gt;22edo&lt;/a&gt;'s&lt;br /&gt;
more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments"&gt;greenwood&lt;/a&gt; and &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund"&gt;secund&lt;/a&gt; temperaments.&lt;br /&gt;
more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments"&gt;greenwood&lt;/a&gt; and &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund"&gt;secund&lt;/a&gt; temperaments.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;