34edo: Difference between revisions
Wikispaces>genewardsmith **Imported revision 497558464 - Original comment: ** |
Wikispaces>JosephRuhf **Imported revision 545669406 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-03-28 21:32:52 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>545669406</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 8: | Line 8: | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">= = | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">= = | ||
34edo divides the octave into 34 equal steps of approximately 35.29412 [[xenharmonic/cent|cent]]s. 34edo contains two [[xenharmonic/17edo|17edo]]'s and the half-octave tritone of 600 cents. It excels as a 5-limit system, with tuning even more accurate than [[31edo]], but with a sharp fifth rather than a flat one, and supports hanson, srutal, tetracot, würschmidt and vishnu temperaments. It does less well in the 7-limit, with two mappings possible for 7/4: a flat one from the patent val, and a sharp one from the 34d val. By way of the patent val 34 supports keemun temperament, and 34d is an excellent alternative to [[22edo]] for 7-limit pajara temperament. In the 11-limit, 34de supports 11-limit pajaric, and in fact is quite close to the POTE tuning; it adds 4375/4374 to the commas of 11-limit pajaric. | 34edo divides the octave into 34 equal steps of approximately 35.29412 [[xenharmonic/cent|cent]]s. 34edo contains two [[xenharmonic/17edo|17edo]]'s and the half-octave tritone of 600 cents. It excels as a 5-limit system, with tuning even more accurate than [[31edo]], but with a sharp fifth rather than a flat one, and supports hanson, srutal, tetracot, würschmidt and vishnu temperaments. It does less well in the 7-limit, with two mappings possible for 7/4: a flat one from the patent val, and a sharp one from the 34d val. By way of the patent val 34 supports keemun temperament, and 34d is an excellent alternative to [[22edo]] for 7-limit pajara temperament. In the 11-limit, 34de supports 11-limit pajaric, and in fact is quite close to the POTE tuning; it adds 4375/4374 to the commas of 11-limit pajaric. On the other hand, the 34d val supports pajara, vishnu and würschmidt, adding 4375/4374 to the commas of pajara. Among subgroup temperaments, the patent val supports semaphore on the 2.3.7 subgroup. | ||
===Approximations to Just Intonation=== | ===Approximations to Just Intonation=== | ||
Line 15: | Line 15: | ||
//Viewed in light of Western diatonic theory, the three extra steps (of 34-et compared to 31-et) in effect widen the intervals between C and D, F and G, and A and B [that is: 6 5 3 6 5 6 3], thus making a distinction between major tones, ratio 9/8 and minor tones, ratio 10/9.// ([[http://en.wikipedia.org/wiki/34_equal_temperament|Wikipedia]]) | //Viewed in light of Western diatonic theory, the three extra steps (of 34-et compared to 31-et) in effect widen the intervals between C and D, F and G, and A and B [that is: 6 5 3 6 5 6 3], thus making a distinction between major tones, ratio 9/8 and minor tones, ratio 10/9.// ([[http://en.wikipedia.org/wiki/34_equal_temperament|Wikipedia]]) | ||
*The sharpness of ~13 cents of 11/8 can fit somewhat with the 9/8 and 13/8 which both are about 7 cents sharp. Likewise the | *The sharpness of ~13 cents of 11/8 can fit somewhat with the 9/8 and 13/8 which both are about 7 cents sharp. Likewise the 16-cent flatness of the 27\34 approximation to 7/4 isn't impossible. The ability to tolerate these errors may depend on subtle natural changes in mood. [[68edo]], double 34, has both these intervals in more perfect form. | ||
===34edo and phi=== | ===34edo and phi=== | ||
Line 42: | Line 42: | ||
|| 17 || 1\34 || 35.294 || || | || 17 || 1\34 || 35.294 || || | ||
===Intervals:=== | ===Intervals:=== | ||
|| degrees of 34edo || solfege || cents || approx. ratios of | || degrees of 34edo || solfege || cents | ||
DMS || approx. ratios of | |||
[[tel/2.3.5.13.17|2.3.5.13.17]] [[xenharmonic/subgroup|subgroup]] || additional ratios | [[tel/2.3.5.13.17|2.3.5.13.17]] [[xenharmonic/subgroup|subgroup]] || additional ratios | ||
of the full [[xenharmonic/17-limit|17-limit]] || pseudo-traditional | of the full [[xenharmonic/17-limit|17-limit]] || pseudo-traditional | ||
notation || | notation || | ||
|| 0 || do || 0.0 || 1/1 || || C = B^^ = A## || | || 0 || do || 0.0 || 1/1 || || C = B^^ = A## || | ||
|| 1 || di || 35.294 || || | || 1 || di || 35.294 | ||
|| 2 || rih || 70.588 || | <span style="background-color: #ffffff;">10°35'18"</span> || || 50/49 || C ^ || | ||
|| 3 || ra || 105.882 || 17/16, 18/17, 16/15 || 15/14 || C#v = Db^ || | || 2 || rih || 70.588 | ||
|| 4 || ru || 141.176 || 13/12 || 14/13, 12/11 || C# || | <span style="background-color: #ffffff;">21°10'35"</span> || 25/24 || || Db = C ^^ = B# || | ||
|| 5 || reh || 176.471 || 10/9 || 11/10 || C#^ = Dv || | || 3 || ra || 105.882 | ||
|| 6 || re || 211.765 || 9/8, 17/15 || | 31°<span style="background-color: #ffffff;">35'18"</span> || 17/16, 18/17, 16/15 || 15/14 || C#v = Db^ || | ||
|| 7 || raw || 247.059 || 15/13 || | || 4 || ru || 141.176 | ||
|| 8 || meh || 282.353 || 20/17, 75/64 || 7/6, 13/11 || Eb || | <span style="background-color: #ffffff;">42°21'11"</span> || 13/12 || 14/13, 12/11 || C# || | ||
|| 9 || me || 317.647 || 6/5 || 17/14 || D#v || | || 5 || reh || 176.471 | ||
|| 10 || mu || 352.941 || 16/13 || 11/9 || D# || | 53°<span style="background-color: #ffffff;">58'28"</span> || 10/9 || 11/10 || C#^ = Dv || | ||
|| 11 || mi || 388.235 || 5/4 || || || | || 6 || re || 211.765 | ||
|| 12 || maa || 423.529 || 51/40, 32/25 || 14/11, 9/7 || E || | <span style="background-color: #ffffff;">63°31'46"</span> || 9/8, 17/15 || || D || | ||
|| 13 || maw || 458.823 || 13/10, 17/13 || 22/17 || E^ = Fv || | || 7 || raw || 247.059 | ||
|| 14 || fa || 494.118 || 4/3 || || F || | 74°<span style="background-color: #ffffff;">7'4"</span> || 15/13 || 8/7 || D^ || | ||
|| 15 || fih || 529.412 || || 15/11 || F^ = E#v || | || 8 || meh || 282.353 | ||
|| 16 || fu || 564.706 || 18/13 || 11/8 || Gb || | <span style="background-color: #ffffff;">84°42'21"</span> || 20/17, 75/64 || 7/6, 13/11 || Eb || | ||
|| 17 || fi/se || 600 || 17/12, 24/17 || 7/5, 10/7 || Gb^ || | || 9 || me || 317.647 | ||
|| 18 || su || 635.294 || 13/9 || 16/11 || F# || | 95°<span style="background-color: #ffffff;">17'39"</span> || 6/5 || 17/14 || D#v || | ||
|| 19 || sih || 670.588 || || 22/15 || F#^ || | || 10 || mu || 352.941 | ||
|| 20 || sol || 705.882 || 3/2 || || G || | <span style="background-color: #ffffff;">105°52'56"</span> || 16/13 || 11/9 || D# || | ||
|| 21 || saw || 741.176 || 20/13, 26/17 || 17/11 || G^ || | || 11 || mi || 388.235 | ||
|| 22 || leh || 776.471 || 25/16, 80/51 || 14/9 || Ab || | 116°<span style="background-color: #ffffff;">28'14"</span> || 5/4 || || || | ||
|| 23 || le || 811.765 || 8/5 || || Ab^ || | || 12 || maa || 423.529 | ||
|| 24 || lu || 847.059 || 13/8 || 18/11 || G# || | <span style="background-color: #ffffff;">127°3'32"</span> || 51/40, 32/25 || 14/11, 9/7 || E || | ||
|| 25 || la || 882.353 || 5/3 || 28/17 || Av || | || 13 || maw || 458.823 | ||
|| 26 || laa || 917.647 || 17/10 || 12/7, 22/13 || A || | <span style="background-color: #ffffff;">137°38'49"</span> || 13/10, 17/13 || 22/17 || E^ = Fv || | ||
|| 27 || law || 952.941 || 26/15 || | || 14 || fa || 494.118 | ||
|| 28 || teh || 988.235 || 16/9, 30/17 || | <span style="background-color: #ffffff;">148°14'7"</span> || 4/3 || || F || | ||
|| 29 || te || 1023.529 || 9/5 || 20/11 || Bb^ || | || 15 || fih || 529.412 | ||
|| 30 || tu || 1058.823 || 24/13 || 13/7, 11/6 || A# || | 158°<span style="background-color: #ffffff;">49'15"</span> || || 15/11 || F^ = E#v || | ||
|| 31 || ti || 1094.118 || 32/17, 17/9, 15/8 || 28/15 || A#^ = Bv || | || 16 || fu || 564.706 | ||
|| 32 || taa || 1129.412 || | <span style="background-color: #ffffff;">169°24'42"</span> || 18/13 || 11/8 || Gb || | ||
|| 33 || da || 1164.706 || || | || 17 || fi/se || 600 | ||
180° || 17/12, 24/17 || 7/5, 10/7 || Gb^ || | |||
|| 18 || su || 635.294 | |||
<span style="background-color: #ffffff;">190°35'18"</span> || 13/9 || 16/11 || F# || | |||
|| 19 || sih || 670.588 | |||
<span style="background-color: #ffffff;">201°10'35"</span> || || 22/15 || F#^ || | |||
|| 20 || sol || 705.882 | |||
<span style="background-color: #ffffff;">211°45'53"</span> || 3/2 || || G || | |||
|| 21 || saw || 741.176 | |||
<span style="background-color: #ffffff;">222°21'11"</span> || 20/13, 26/17 || 17/11 || G^ || | |||
|| 22 || leh || 776.471 | |||
<span style="background-color: #ffffff;">233°58'28"</span> || 25/16, 80/51 || 14/9 || Ab || | |||
|| 23 || le || 811.765 | |||
<span style="background-color: #ffffff;">243°31'46"</span> || 8/5 || || Ab^ || | |||
|| 24 || lu || 847.059 | |||
<span style="background-color: #ffffff;">254°7'4"</span> || 13/8 || 18/11 || G# || | |||
|| 25 || la || 882.353 | |||
<span style="background-color: #ffffff;">264°42'21"</span> || 5/3 || 28/17 || Av || | |||
|| 26 || laa || 917.647 | |||
<span style="background-color: #ffffff;">275°17'39"</span> || 17/10 || 12/7, 22/13 || A || | |||
|| 27 || law || 952.941 | |||
285°<span style="background-color: #ffffff;">52'56"</span> || 26/15 || 7/4 || A^ = Bbv =G## || | |||
|| 28 || teh || 988.235 | |||
<span style="background-color: #ffffff;">296°28'14"</span> || 16/9, 30/17 || || Bb || | |||
|| 29 || te || 1023.529 | |||
307°<span style="background-color: #ffffff;">3'32"</span> || 9/5 || 20/11 || Bb^ || | |||
|| 30 || tu || 1058.823 | |||
<span style="background-color: #ffffff;">317°38'49"</span> || 24/13 || 13/7, 11/6 || A# || | |||
|| 31 || ti || 1094.118 | |||
328°<span style="background-color: #ffffff;">14'7"</span> || 32/17, 17/9, 15/8 || 28/15 || A#^ = Bv || | |||
|| 32 || taa || 1129.412 | |||
<span style="background-color: #ffffff;">338°49'15"</span> || 48/25 || || B || | |||
|| 33 || da || 1164.706 | |||
349°<span style="background-color: #ffffff;">24'42"</span> || || 49/25 || B^ = A##v || | |||
==<span style="background-color: #ffffff;">Notations</span>== | ==<span style="background-color: #ffffff;">Notations</span>== | ||
The chain of fifths gives you the seven naturals, and their sharps and flats. The sharp or flat of a note is (what is commonly called) a neutral second away - the double-sharp adds up to a minor third away. This has led certain complainers, aiming to notate 17 edo (which is relatively popular), to want an extra character to raise something a small step of which. The 34 tone equal temperament, however, can be constructed from two equally spaced 17-note scales: a symbol indicating an adjustment of 1/34 up or down also serves the purpose of the previous sentence, by using two of it. This systemology of course emphasizes certain aspects of 34-edo which may not be most efficient expressions of some musical purposes: The reader can easily construct his own notation. One concern is that a system with 15 nominals for example, instead of seven, might be waste - of paper, space, brainmemory etc. if they aren't used consecutively and frequently. The system spelled out here has familiarity as an advantage or disadvantage. Tangentially, while the table uses ^ and v for "up" and "down", Kosmorosky prefers using filled in triangles because that's what I decided on years ago, and to reserve /\ and \/ as adjustments by 1/68 octave. | The chain of fifths gives you the seven naturals, and their sharps and flats. The sharp or flat of a note is (what is commonly called) a neutral second away - the double-sharp adds up to a minor third away. This has led certain complainers, aiming to notate 17 edo (which is relatively popular), to want an extra character to raise something a small step of which. The 34 tone equal temperament, however, can be constructed from two equally spaced 17-note scales: a symbol indicating an adjustment of 1/34 up or down also serves the purpose of the previous sentence, by using two of it. This systemology of course emphasizes certain aspects of 34-edo which may not be most efficient expressions of some musical purposes: The reader can easily construct his own notation. One concern is that a system with 15 nominals for example, instead of seven, might be waste - of paper, space, brainmemory etc. if they aren't used consecutively and frequently. The system spelled out here has familiarity as an advantage or disadvantage. Tangentially, while the table uses ^ and v for "up" and "down", Kosmorosky prefers using filled in triangles because that's what I decided on years ago, and to reserve /\ and \/ as adjustments by 1/68 octave. | ||
Line 113: | Line 147: | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>34edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><!-- ws:end:WikiTextHeadingRule:0 --> </h1> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>34edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><!-- ws:end:WikiTextHeadingRule:0 --> </h1> | ||
<br /> | <br /> | ||
34edo divides the octave into 34 equal steps of approximately 35.29412 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">cent</a>s. 34edo contains two <a class="wiki_link" href="http://xenharmonic.wikispaces.com/17edo">17edo</a>'s and the half-octave tritone of 600 cents. It excels as a 5-limit system, with tuning even more accurate than <a class="wiki_link" href="/31edo">31edo</a>, but with a sharp fifth rather than a flat one, and supports hanson, srutal, tetracot, würschmidt and vishnu temperaments. It does less well in the 7-limit, with two mappings possible for 7/4: a flat one from the patent val, and a sharp one from the 34d val. By way of the patent val 34 supports keemun temperament, and 34d is an excellent alternative to <a class="wiki_link" href="/22edo">22edo</a> for 7-limit pajara temperament. In the 11-limit, 34de supports 11-limit pajaric, and in fact is quite close to the POTE tuning; it adds 4375/4374 to the commas of 11-limit pajaric. | 34edo divides the octave into 34 equal steps of approximately 35.29412 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">cent</a>s. 34edo contains two <a class="wiki_link" href="http://xenharmonic.wikispaces.com/17edo">17edo</a>'s and the half-octave tritone of 600 cents. It excels as a 5-limit system, with tuning even more accurate than <a class="wiki_link" href="/31edo">31edo</a>, but with a sharp fifth rather than a flat one, and supports hanson, srutal, tetracot, würschmidt and vishnu temperaments. It does less well in the 7-limit, with two mappings possible for 7/4: a flat one from the patent val, and a sharp one from the 34d val. By way of the patent val 34 supports keemun temperament, and 34d is an excellent alternative to <a class="wiki_link" href="/22edo">22edo</a> for 7-limit pajara temperament. In the 11-limit, 34de supports 11-limit pajaric, and in fact is quite close to the POTE tuning; it adds 4375/4374 to the commas of 11-limit pajaric. On the other hand, the 34d val supports pajara, vishnu and würschmidt, adding 4375/4374 to the commas of pajara. Among subgroup temperaments, the patent val supports semaphore on the 2.3.7 subgroup.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:2:&lt;h3&gt; --><h3 id="toc1"><a name="x--Approximations to Just Intonation"></a><!-- ws:end:WikiTextHeadingRule:2 -->Approximations to Just Intonation</h3> | <!-- ws:start:WikiTextHeadingRule:2:&lt;h3&gt; --><h3 id="toc1"><a name="x--Approximations to Just Intonation"></a><!-- ws:end:WikiTextHeadingRule:2 -->Approximations to Just Intonation</h3> | ||
Line 120: | Line 154: | ||
<em>Viewed in light of Western diatonic theory, the three extra steps (of 34-et compared to 31-et) in effect widen the intervals between C and D, F and G, and A and B [that is: 6 5 3 6 5 6 3], thus making a distinction between major tones, ratio 9/8 and minor tones, ratio 10/9.</em> (<a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/34_equal_temperament" rel="nofollow">Wikipedia</a>)<br /> | <em>Viewed in light of Western diatonic theory, the three extra steps (of 34-et compared to 31-et) in effect widen the intervals between C and D, F and G, and A and B [that is: 6 5 3 6 5 6 3], thus making a distinction between major tones, ratio 9/8 and minor tones, ratio 10/9.</em> (<a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/34_equal_temperament" rel="nofollow">Wikipedia</a>)<br /> | ||
<br /> | <br /> | ||
*The sharpness of ~13 cents of 11/8 can fit somewhat with the 9/8 and 13/8 which both are about 7 cents sharp. Likewise the | *The sharpness of ~13 cents of 11/8 can fit somewhat with the 9/8 and 13/8 which both are about 7 cents sharp. Likewise the 16-cent flatness of the 27\34 approximation to 7/4 isn't impossible. The ability to tolerate these errors may depend on subtle natural changes in mood. <a class="wiki_link" href="/68edo">68edo</a>, double 34, has both these intervals in more perfect form.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:4:&lt;h3&gt; --><h3 id="toc2"><a name="x--34edo and phi"></a><!-- ws:end:WikiTextHeadingRule:4 -->34edo and phi</h3> | <!-- ws:start:WikiTextHeadingRule:4:&lt;h3&gt; --><h3 id="toc2"><a name="x--34edo and phi"></a><!-- ws:end:WikiTextHeadingRule:4 -->34edo and phi</h3> | ||
Line 323: | Line 357: | ||
</td> | </td> | ||
<td>cents<br /> | <td>cents<br /> | ||
DMS<br /> | |||
</td> | </td> | ||
<td>approx. ratios of<br /> | <td>approx. ratios of<br /> | ||
Line 354: | Line 389: | ||
</td> | </td> | ||
<td>35.294<br /> | <td>35.294<br /> | ||
<span style="background-color: #ffffff;">10°35'18&quot;</span><br /> | |||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td><br /> | <td>50/49<br /> | ||
</td> | </td> | ||
<td>C ^<br /> | <td>C ^<br /> | ||
Line 368: | Line 404: | ||
</td> | </td> | ||
<td>70.588<br /> | <td>70.588<br /> | ||
<span style="background-color: #ffffff;">21°10'35&quot;</span><br /> | |||
</td> | </td> | ||
<td><br /> | <td>25/24<br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 382: | Line 419: | ||
</td> | </td> | ||
<td>105.882<br /> | <td>105.882<br /> | ||
31°<span style="background-color: #ffffff;">35'18&quot;</span><br /> | |||
</td> | </td> | ||
<td>17/16, 18/17, 16/15<br /> | <td>17/16, 18/17, 16/15<br /> | ||
Line 396: | Line 434: | ||
</td> | </td> | ||
<td>141.176<br /> | <td>141.176<br /> | ||
<span style="background-color: #ffffff;">42°21'11&quot;</span><br /> | |||
</td> | </td> | ||
<td>13/12<br /> | <td>13/12<br /> | ||
Line 410: | Line 449: | ||
</td> | </td> | ||
<td>176.471<br /> | <td>176.471<br /> | ||
53°<span style="background-color: #ffffff;">58'28&quot;</span><br /> | |||
</td> | </td> | ||
<td>10/9<br /> | <td>10/9<br /> | ||
Line 424: | Line 464: | ||
</td> | </td> | ||
<td>211.765<br /> | <td>211.765<br /> | ||
<span style="background-color: #ffffff;">63°31'46&quot;</span><br /> | |||
</td> | </td> | ||
<td>9/8, 17/15<br /> | <td>9/8, 17/15<br /> | ||
</td> | </td> | ||
<td> | <td><br /> | ||
</td> | </td> | ||
<td>D<br /> | <td>D<br /> | ||
Line 438: | Line 479: | ||
</td> | </td> | ||
<td>247.059<br /> | <td>247.059<br /> | ||
74°<span style="background-color: #ffffff;">7'4&quot;</span><br /> | |||
</td> | </td> | ||
<td>15/13<br /> | <td>15/13<br /> | ||
</td> | </td> | ||
<td><br /> | <td>8/7<br /> | ||
</td> | </td> | ||
<td>D^<br /> | <td>D^<br /> | ||
Line 452: | Line 494: | ||
</td> | </td> | ||
<td>282.353<br /> | <td>282.353<br /> | ||
<span style="background-color: #ffffff;">84°42'21&quot;</span><br /> | |||
</td> | </td> | ||
<td>20/17, 75/64<br /> | <td>20/17, 75/64<br /> | ||
Line 466: | Line 509: | ||
</td> | </td> | ||
<td>317.647<br /> | <td>317.647<br /> | ||
95°<span style="background-color: #ffffff;">17'39&quot;</span><br /> | |||
</td> | </td> | ||
<td>6/5<br /> | <td>6/5<br /> | ||
Line 480: | Line 524: | ||
</td> | </td> | ||
<td>352.941<br /> | <td>352.941<br /> | ||
<span style="background-color: #ffffff;">105°52'56&quot;</span><br /> | |||
</td> | </td> | ||
<td>16/13<br /> | <td>16/13<br /> | ||
Line 494: | Line 539: | ||
</td> | </td> | ||
<td>388.235<br /> | <td>388.235<br /> | ||
116°<span style="background-color: #ffffff;">28'14&quot;</span><br /> | |||
</td> | </td> | ||
<td>5/4<br /> | <td>5/4<br /> | ||
Line 508: | Line 554: | ||
</td> | </td> | ||
<td>423.529<br /> | <td>423.529<br /> | ||
<span style="background-color: #ffffff;">127°3'32&quot;</span><br /> | |||
</td> | </td> | ||
<td>51/40, 32/25<br /> | <td>51/40, 32/25<br /> | ||
Line 522: | Line 569: | ||
</td> | </td> | ||
<td>458.823<br /> | <td>458.823<br /> | ||
<span style="background-color: #ffffff;">137°38'49&quot;</span><br /> | |||
</td> | </td> | ||
<td>13/10, 17/13<br /> | <td>13/10, 17/13<br /> | ||
Line 536: | Line 584: | ||
</td> | </td> | ||
<td>494.118<br /> | <td>494.118<br /> | ||
<span style="background-color: #ffffff;">148°14'7&quot;</span><br /> | |||
</td> | </td> | ||
<td>4/3<br /> | <td>4/3<br /> | ||
Line 550: | Line 599: | ||
</td> | </td> | ||
<td>529.412<br /> | <td>529.412<br /> | ||
158°<span style="background-color: #ffffff;">49'15&quot;</span><br /> | |||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 564: | Line 614: | ||
</td> | </td> | ||
<td>564.706<br /> | <td>564.706<br /> | ||
<span style="background-color: #ffffff;">169°24'42&quot;</span><br /> | |||
</td> | </td> | ||
<td>18/13<br /> | <td>18/13<br /> | ||
Line 578: | Line 629: | ||
</td> | </td> | ||
<td>600<br /> | <td>600<br /> | ||
180°<br /> | |||
</td> | </td> | ||
<td>17/12, 24/17<br /> | <td>17/12, 24/17<br /> | ||
Line 592: | Line 644: | ||
</td> | </td> | ||
<td>635.294<br /> | <td>635.294<br /> | ||
<span style="background-color: #ffffff;">190°35'18&quot;</span><br /> | |||
</td> | </td> | ||
<td>13/9<br /> | <td>13/9<br /> | ||
Line 606: | Line 659: | ||
</td> | </td> | ||
<td>670.588<br /> | <td>670.588<br /> | ||
<span style="background-color: #ffffff;">201°10'35&quot;</span><br /> | |||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 620: | Line 674: | ||
</td> | </td> | ||
<td>705.882<br /> | <td>705.882<br /> | ||
<span style="background-color: #ffffff;">211°45'53&quot;</span><br /> | |||
</td> | </td> | ||
<td>3/2<br /> | <td>3/2<br /> | ||
Line 634: | Line 689: | ||
</td> | </td> | ||
<td>741.176<br /> | <td>741.176<br /> | ||
<span style="background-color: #ffffff;">222°21'11&quot;</span><br /> | |||
</td> | </td> | ||
<td>20/13, 26/17<br /> | <td>20/13, 26/17<br /> | ||
Line 648: | Line 704: | ||
</td> | </td> | ||
<td>776.471<br /> | <td>776.471<br /> | ||
<span style="background-color: #ffffff;">233°58'28&quot;</span><br /> | |||
</td> | </td> | ||
<td>25/16, 80/51<br /> | <td>25/16, 80/51<br /> | ||
Line 662: | Line 719: | ||
</td> | </td> | ||
<td>811.765<br /> | <td>811.765<br /> | ||
<span style="background-color: #ffffff;">243°31'46&quot;</span><br /> | |||
</td> | </td> | ||
<td>8/5<br /> | <td>8/5<br /> | ||
Line 676: | Line 734: | ||
</td> | </td> | ||
<td>847.059<br /> | <td>847.059<br /> | ||
<span style="background-color: #ffffff;">254°7'4&quot;</span><br /> | |||
</td> | </td> | ||
<td>13/8<br /> | <td>13/8<br /> | ||
Line 690: | Line 749: | ||
</td> | </td> | ||
<td>882.353<br /> | <td>882.353<br /> | ||
<span style="background-color: #ffffff;">264°42'21&quot;</span><br /> | |||
</td> | </td> | ||
<td>5/3<br /> | <td>5/3<br /> | ||
Line 704: | Line 764: | ||
</td> | </td> | ||
<td>917.647<br /> | <td>917.647<br /> | ||
<span style="background-color: #ffffff;">275°17'39&quot;</span><br /> | |||
</td> | </td> | ||
<td>17/10<br /> | <td>17/10<br /> | ||
Line 718: | Line 779: | ||
</td> | </td> | ||
<td>952.941<br /> | <td>952.941<br /> | ||
285°<span style="background-color: #ffffff;">52'56&quot;</span><br /> | |||
</td> | </td> | ||
<td>26/15<br /> | <td>26/15<br /> | ||
</td> | </td> | ||
<td><br /> | <td>7/4<br /> | ||
</td> | </td> | ||
<td>A^ = Bbv =G##<br /> | <td>A^ = Bbv =G##<br /> | ||
Line 732: | Line 794: | ||
</td> | </td> | ||
<td>988.235<br /> | <td>988.235<br /> | ||
<span style="background-color: #ffffff;">296°28'14&quot;</span><br /> | |||
</td> | </td> | ||
<td>16/9, 30/17<br /> | <td>16/9, 30/17<br /> | ||
</td> | </td> | ||
<td> | <td><br /> | ||
</td> | </td> | ||
<td>Bb<br /> | <td>Bb<br /> | ||
Line 746: | Line 809: | ||
</td> | </td> | ||
<td>1023.529<br /> | <td>1023.529<br /> | ||
307°<span style="background-color: #ffffff;">3'32&quot;</span><br /> | |||
</td> | </td> | ||
<td>9/5<br /> | <td>9/5<br /> | ||
Line 760: | Line 824: | ||
</td> | </td> | ||
<td>1058.823<br /> | <td>1058.823<br /> | ||
<span style="background-color: #ffffff;">317°38'49&quot;</span><br /> | |||
</td> | </td> | ||
<td>24/13<br /> | <td>24/13<br /> | ||
Line 774: | Line 839: | ||
</td> | </td> | ||
<td>1094.118<br /> | <td>1094.118<br /> | ||
328°<span style="background-color: #ffffff;">14'7&quot;</span><br /> | |||
</td> | </td> | ||
<td>32/17, 17/9, 15/8<br /> | <td>32/17, 17/9, 15/8<br /> | ||
Line 788: | Line 854: | ||
</td> | </td> | ||
<td>1129.412<br /> | <td>1129.412<br /> | ||
<span style="background-color: #ffffff;">338°49'15&quot;</span><br /> | |||
</td> | </td> | ||
<td><br /> | <td>48/25<br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 802: | Line 869: | ||
</td> | </td> | ||
<td>1164.706<br /> | <td>1164.706<br /> | ||
349°<span style="background-color: #ffffff;">24'42&quot;</span><br /> | |||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td><br /> | <td>49/25<br /> | ||
</td> | </td> | ||
<td>B^ = A##v<br /> | <td>B^ = A##v<br /> |