256edo: Difference between revisions
Cmloegcmluin (talk | contribs) remove temporary link to defactoring |
No edit summary |
||
Line 1: | Line 1: | ||
The 256 equal division divides the [[octave]] into 256 equal parts of exactly 4.6875 [[cent]]s each. It is [[contorted]] in the 5-limit, and the error of harmonic 7 leads to inconsistency, which is likely one of the reasons this EDO attracts little interest. | The 256 equal division divides the [[octave]] into 256 equal parts of exactly 4.6875 [[cent]]s each. It is [[contorted]] in the 5-limit, and the error of harmonic 7 leads to inconsistency, which is likely one of the reasons this EDO attracts little interest. | ||
== Theory == | |||
{{Primes in edo|256|columns=15}} | |||
256edo is good at the 2.23.43.47 subgroup. If the error below 40% is considered "good", 256edo can be used to play no-fives 17 limit. If the "prime number obsession" approach found in math circles is applied - then 256edo can be played using the coprime harmonics, no matter how bad the approximation. Under such rule, 256edo supports the 2.7.13.19 subgroup. | |||
In the 2.7.13.19 subgroup in the patent val, 256edo tempers out 32851/32768, and supports the corresponding 20 & 73 & 256 rank 3 temperament. | |||
[[Category:Equal divisions of the octave]] | [[Category:Equal divisions of the octave]] |