293edo: Difference between revisions

Eliora (talk | contribs)
Eliora (talk | contribs)
Line 5: Line 5:
== Theory ==
== Theory ==
{{primes in edo|293|columns=14}}
{{primes in edo|293|columns=14}}
293 edo does not approximate prime harmonics well all the way into the 41st, unless 30-relative cent errors are considered "well", in which case it equally represents all of them. The first harmonic that it approximates within 1 standard deviation of one step is 43rd, which is 10 cents flat compared to the just intonated interval.
293 edo does not approximate prime harmonics well all the way into the 41st, unless 30-relative cent errors are considered "well", in which case it equally represents all of them. The first harmonic that it approximates within 1 standard deviation of one step is 43rd, which is 10 cents flat compared to the just intonated interval.  


When it comes to the intervals that are not octave-reduced prime harmonics, some which are well-approximated are [[6/5]], [[11/7]], [[17/11]], [[19/17]], [[24/23]], [[25/17]], and [[25/19]]. [[21/16]], which is a composite octave-reduced harmonic, is also well represented. These numbers are related to poor approximation of prime harmonics by cancelling out of the errors. For example, 19th and 17th harmoincs have +36 and +37 error respectively, which together cancels out to 1.
When it comes to the intervals that are not octave-reduced prime harmonics, some which are well-approximated are [[6/5]], [[11/7]], [[17/11]], [[19/17]], [[24/23]], [[25/17]], and [[25/19]]. [[21/16]], which is a composite octave-reduced harmonic, is also well represented. These numbers are related to poor approximation of prime harmonics by cancelling out of the errors. For example, 19th and 17th harmoincs have +36 and +37 error respectively, which together cancels out to 1.